Concussion – An evidence based approach to optometric management

Course Description
• This course provides an overview of the current evidence-based pathophysiological mechanism of concussion and visual sequelae as well as a literature-guided direction for optometric patient management

Learning Objectives
• Describe the pathophysiological changes in concussion
• Outline the current evidence-based visual sequelae post-concussion
• Explain the current/future directions of optometry's role in concussion management

Outline
• Goals/General Outline
 o Traumatic Brain Injury
 ▪ Grades
 ▪ Pathophysiology
 o Concussion
 ▪ Definition
 ▪ What do we know?
 ▪ What do we not know?
 ▪ Challenges in diagnosis?
 ▪ Sequelae – Post Concussion Syndrome, Second Impact Syndrome, Chronic Traumatic Encephalopathy
 o Visual Problems After Concussion
 ▪ Permanent vs. Transient
 ▪ Literature review of most prominent disorders
 ▪ Future directions for the field
 ▪ How to manage in a primary vs. a tertiary care setting
 ▪ Role of Vision Therapy
• Glasgow Coma Scale (GCS) and Levels of TBI
 o GCS
 ▪ Motor Response
 ▪ Verbal Response
 ▪ Eye Opening
 o Level of TBI
 ▪ Mild
 ▪ GCS 13-15
 ▪ +/- loss of consciousness, less than 30 minutes
 ▪ Normal neuroimaging (low-field MRI/CT)
 ▪ Moderate
 ▪ GCS 9-12
 ▪ Loss of consciousness, greater than 30 minutes, less than 24 hours
 ▪ Normal/abnormal neuroimaging
 ▪ Severe
 ▪ GCS 3-8
 ▪ Coma
Jacqueline Theis, O.D., F.A.A.O.
135 Shoreline Court, Richmond CA 94804
Phone: 415-404-0557 • E-Mail: dr.jaci.od@gmail.com

- Normal/abnormal neuroimaging
 - Vegetative
 - GCS <3

- TBI Pathophysiology
 - Primary traumatic brain damage
 - Mechanical forces leads to tissue deformation AT the moment of injury
 - Direct damage to blood vessels, axons, neurons, glia, etc
 - Diffuse axonal injury (DAI)/vascular injury (DVI)
 - Focal Injury
 - Vascular (intracerebral, subdural, extradural, subarachnoid injury)
 - Axonal injury
 - Contusion
 - Laceration
 - Secondary traumatic brain damage
 - Complication of primary damage
 - Ischemic and hypoxic damage, cerebral swelling, increased intracranial pressure, infection, etc

- Concussion - Controversy over a “Definition”
 - Type of mild traumatic brain injury
 - External force or sudden movement causes rapid acceleration/deceleration of the brain tissue within the skull
 - Internal linear, translational, and rotational forces leads to a complex pathophysiological process that results in functional disturbance of brain function
 - Traumatically induced transient disturbance in brain function
 - Current definition – but emerging research and advancing technology is questioning how reversible/transient this dysfunction is

- Epidemiology of Concussion
 - CDC 2010 - 2.5million people went to ER for TBI based on ICD9 data
 - 75% mTBI
 - Underestimate since only includes those who presented to the ER and had a relevant diagnostic code (Voss)
 - Pediatric population
 - 173,285 <19yo nonfatal concussion annually 2001-2009
 - Increase from 153,375 to 248,418
 - Most common mechanism – Falls
 - Followed by motor vehicle accidents, blunt object trauma, assault/battery
 - High Risk Populations
 - Military
 - Athletes
 - 1.6-3.8million Sports-related concussion (SRC) annually
 - Discrepancy in numbers of CDC due to difficulty in research
 - Difficulties with under-reporting/diagnosis of SRC
 - 5.8% of all collegiate injuries, 8.9% of high school injuries

- Common Diagnostic Tests for Concussion for Physicians
 - Self-report Symptom Checklists
 - PCSS – Post Concussion Symptom Scale
 - Brief cognitive assessment
• Balance Tests
 - SCAT 3
 - BESS
• Computer Based Neuropsychological Tests
 - ImPACT
 - CogSport
 - Headminder
• Vision- the newest factor in concussion management
 - Emerging research points to vision as an excellent marker for acute concussion
 - King-Devick
 - VOMS
 - Lack of acceptance of visual screeners and lack of knowledge about vision in medical providers is a barrier to optometric referrals and management
 - Educating ourselves and working with general physicians/sports medicine physicians to reduce the barrier
• Why does diagnosis matter?
 - Second Impact Syndrome
 - Pathophysiology
 - Second impact prior to resolution of first concussion causes complete disautoregulation of CNS – leading to diffuse cerebral edema, increased intracranial pressure, and death
 - Mortality rate 50%, Morbidity rate 100%
 - Chronic Traumatic Encephalopathy CTE
 - Possible implications of tau protein deposition in the brain and repeat head injury
• Why is Diagnosis Difficult?
 - Challenging for even well-trained medical professionals
 - No structural neural injury on conventional neuroimaging (CT, low field MRIs)
 - Functional damage on advanced neuroimaging (high field functional MRI, MRI with diffuse tensor imaging)
 - Limited access to this equipment by patients and providers
• Concussion Management?
 - Classically
 - 80-90% of symptomatic concussions resolve within 7-10 days after injury
 - Is symptom resolution indicative of complete recovery?
 - Long term side effects/brain damage from concussion yet to be determined?
 - Is it transient?
 - More recent studies question if concussion recovery takes longer ~3-4 weeks?
• Optometry’s Role?
 - Pressing need for objective diagnostic tools for concussion assessment that are straightforward to administer
 - Current research in using eye movements and oculomotor function for sensitive and objective biomarkers of cerebral dysfunction
 - Can we track concussion with the visual system??
 - Management of Post-Concussion/Head Injury Vision Problems
 - Co-management/multidisciplinary approach to concussion
- Why vision may be key and how to prepare yourself for a concussion examination
 - Afferent Visual Pathway
 - Efferent Visual Pathway - CN III, IV, VI, PS, Symp
 - Visual Pathways and the Lobes of the Brain
 o Frontal lobe – eye movements
 o Parietal Lobe – Where pathway
 o Temporal Lobe – What pathway
 o Occipital Lobe – visual cortex
 o Cerebellum- Vestibular-ocular pathway
- Visual Attention and Visual Processing
- Literature Based Review of vision problems seen post-concussion – what we know now, and where research is heading
 o Oculomotor dysfunction
 - Vergence dysfunction
 - Convergence insufficiency
 - Difference between developmental and traumatic convergence insufficiency
 - Accommodative disorders
 - Saccadic dysfunction
 - Visual processing disorders – reduced visual processing speed
 o n=219
 - Post-season KD scores were lower (better than pre-season scores - mild learning effect
 o n=10 concussions - significant worsening from baseline 5.9 sec
 o Remove from Play/Sideline Assessment Tool
 o Requires baseline
 - Photophobia
- DEM
 o Normed for 6-13 year olds
 o Can assess visual processing speed/RAN versus horizontal tracking/binocular vision
 o Not known outside of Optometry
 o Minimal research compared to KD
- VOMS (Vestibular/Ocular Motor Screening) Assessment
 - VOMS
 - 1. Smooth Pursuit
 - 2. Horizontal and Vertical Saccades
 - 3. Convergence
 - 4. Horizontal VOR
5. Visual Motion Sensitivity
 - n=64, Age 13.9 +/- 2.5 years seen 5.5 +/- 4.0 days post SRC and the PCSS (Post-Concussion Symptom Scale)
 - 61% reported symptom provocation after at least 1 VOMS item, all VOMS items were related to the PCSS total symptom score
 - High Predicted probability for identifying concussed patients

- fMRI of Acute Oculomotor Deficits in Concussed Athletes
 - n=9, 7 days post-concussion
 - n=9, age, sex match normal volunteers
 - Fixation, Reflexive saccades, anti-saccades, memory guided saccades, self-paced saccades
 - fMRI - widespread increased activation of multiple brain areas following concussion in response to oculomotor tasks
 - Longer latency time, worse position errors, fewer number of self-paced saccades

- Post-Concussion/Head Injury Vision Problems
 - n=220 individuals with TBI (n=160) or CVA (n=60)
 - Computer based query in clinical population 2000-2003
 - Results: Majority with either TBI (90%) or CVA (86.7%) manifested an oculomotor dysfunction

- Vestibulo-ocular dysfunction in pediatric SRC
 - Retrospective review of all patients with acute SRC (presenting 30 days or less post injury) and PCS (3 or more symptoms for at least 1 month) referred to a multidisciplinary pediatric concussion program from 9/2013-7/2014
 - Methods - Clinical History, Physical, PCSS, VOD
 - VOD Complaint (dizziness, blurred vision, etc) + Sign (Abnormal pursuits, saccades, VOR)
 - Results - n=101, age 14.2 +/- 2.3 years, 76.2% with acute SRC (n=77) and 23.8% with PCS (n=24)
 - Mean duration of symptoms was 40 days for patients w/ acute SRC and VOD vs. 21 days for acute SRC without VOD.
 - Conclusions: Evidence of VOD in acute SRC and PCS. VOD was a significant risk factor for development of PCS

- TBI and Visual Consequences in a Military population
 - Retrospective analysis of eye exam records of 50 NBR and 50 BR TBI patients at PA VA Neuro-Rehabilitation Hospital
 - Results: 65% of NBR and BR TBI patients reported vision problems, Reading
complaints in 50%
 o High rates of light sensitivity, saccadic dysfunction, accommodative dysfunction and convergence insufficiency

• Role for Vision Therapy?
 o n=220 individuals with TBI (n=160) or CVA (n=60)
 o Computer based query in clinical population 2000-2003, selected those who completed optometric VT program TBI (n=33), CVA (n=7)
 o Results: 90% of TBI and 100% with CVI had treatment success
 o Marked/total improvement in at least 1 primary symptom and at least 1 primary sign
 o Improvements remained stable at retesting 2-3 months later

• Visual Consequences of Concussion in Sport
 o Return to Play
 o Return to Learn
 ▪ Visual Impact Off the Field

• Optometric Management
 o Primary Care
 ▪ Vergence (Ranges, NPC, Facility)
 ▪ Accommodation (NPA, Facility)
 ▪ DEM
 ▪ Crowding (crowded acuity symbols)
 ▪ Prescription glasses
 ▪ Focusing/vergence issues
 ▪ Sunglasses
 ▪ Reassurance
 o Tertiary Care - PCS
 ▪ Comprehensive Binocular Vision Assessment
 ▪ Visual Perceptual Skills Assessment
 ▪ Vision Therapy
 ▪ Vestibulo-Oculomotor Therapy

• Cases – Acute Concussion
 o 1) 18 year old male with baseline oculomotor examination pre-concussion
 ▪ Post-concussion patient had convergence insufficiency, vergence dysfunction, saccadic dysfunction, asymmetric accommodative insufficiency, and photophobia
 ▪ Patient seen at 48 hours, 1 week, and 1 month post concussion - all post-concussion binocular disorders returned to his baseline within 1 month
 o 2) 12 year old male post-concussion (x2) complaints of blur, photophobia, fatigue with reading
 ▪ Post-concussion - accommodative insufficiency, convergence insufficiency, inability to focus through his age-appropriate hyperopia
 ▪ Self resolution 6-8 weeks later
 o 3) 19 year old female post-concussion complaints of blur with reading, unable to pass her ImPACT testing
 ▪ Post-concussion - accommodative insufficiency
- Self resolution 8 weeks later