To drop or to chop – options of medical and surgical management of glaucoma

PINAKIN GUNVANT DAVEY OD, PHD, FAAO
ASSOCIATE PROFESSOR, WESTERN UNIVERSITY OF HEALTH SCIENCES
ADJUNCT ASSOCIATE PROFESSOR, UNIVERSITY OF LOUISVILLE
ADJUNCT ASSOCIATE PROFESSOR, UNIVERSITY OF MEMPHIS

Disclosure

- None

J Caprioli; A Visual Field Index for Calculation of Glaucoma Rate of Progression

To chop or to drop

- This debate has gone on for long time
- What should occur first?
 - Drop
 - Chop

Medications first advantages

- Drugs are safer than surgery-
 - Less complications
 - Less discomfort
- Drug effects can reversed or is short acting
- Less expensive in the short run
- Multiple drugs can be combined to achieve successful reduction in IOP
- Better quality of life when compared to surgery first (Lichter et al., Ophthalmology 2001)

Medications first disadvantages

- May be more expensive in the long run
- Multiple drugs
 - Compliance, adherence and persistence issues
- Chronic drug uses and its effect on future surgical outcomes?
 - Preservatives effect?
 - Inflammation leading to failure of future procedures*
 - Increased chances of cataract formation

*Broadway DC et al., Adverse effects of topical antiglaucoma medications: II Arch Ophthalmal 1994
Surgery first - advantages
- If successful and large drop in IOP may be obtained
- No issues related to patient compliance, adherence and persistence
- Good in situations where obtaining continuous supply of medications is a problem
- May be cheaper long term

Surgery first - disadvantages
- Outcomes may be variable
- Long term may lose efficacy
- May still require additional topical medications
- Complications may be dire
- Comfort and quality of life may be lower
- Chances of cataract formation is greater than topical medications
- Age- young vs. older individuals

Race and management options
- Race – white versus individuals with greater pigment
- Individuals with greater pigment- greater risk of post-operative scarring*
 - Medications – first choice

*Broadway DC et al., Racial differences in the results of glaucoma filtration surgery: are racial differences in conjunctival cell profile important? BJO 1994

Age and management options
- Younger individuals
 - Accelerated wound healing systems
 - Thick fleshy periocular tissues heals rapidly
 - Thus older individuals better suited for surgical options

Overall mostly it is medications first!

When is surgery indicated?
Current practice patterns

- Unacceptable high pressures will inevitably destroy optic nerve tissue
- Safe levels of IOP by any means warranted
 - If these don’t work or not sufficient
 - drugs like – prostaglandins
 - reduction in inflow – beta blockers
- Maximal medical therapy
 - Consider surgery

Maximal tolerated medical therapy

- Conventional/Trabecular
 - Carbonic Anhydrase Inhibitors (CAIs)
 - Prostaglandin derivatives:
 - Bimatoprost
 - Latanoprost
 - α2-Agonists:
 - Apraclonidine
 - Brimonidine
- Nonconventional/Uveoscleral
 - Prostaglandin derivatives:
 - Travoprost
 - α2-Agonists:
 - Apraclonidine
 - Brimonidine

And how exactly do I use them?

- Stage of disease
 - Visual field status
- Stage of nerve damage
 - Rim tissue remaining
- Type of glaucoma
 - POAG – medical first makes sense
 - Secondary glaucoma
 - Congenital glaucoma
 - Complete angle closure – treated differently
- Adherence, compliance, persistence issues
- Effect of medications and future outcomes of surgery

Do we really have the luxury to use them all?

Target pressure

- A theoretical value below which visual field and ONH appear stable (not deteriorating).
- Calculated from highest recorded IOP.
- Conventionally 20-30% decrease in IOP.
- 40% or more if severe glaucoma
Target pressure calculation

- **Target Pressure** = Maximum IOP - Max IOP% - Z

Max IOP% can be approximately 20% or 30% of max IOP value.

Is this defect a sign of "early glaucoma"

Criteria for glaucomatous damage

- GHT outside normal limits in at least two occasions
- A cluster of three or more **non-edge** points (pattern deviation plot) all of which are depressed at a p<5% and one of which is depressed at a p<1% on two occasions (respecting horizontal meridian)
- PSD < 5% of normal individuals
- This criterion was written for 30-2, if 24-2 field is analyzed edge points are included.

Why is staging important?

- Treatment issues
- Management issues
- Prognosis
- Research

Staging of disease

Staging based on MD

- Better than -6 dB – Mild
- Worse than -6.0 dB but better than -12 dB – Moderate
- Worse than -12.0 dB – Severe
Progression

Guided progression Analysis
- Can be used with SITA standard and Fast but not SWAP.
- Full threshold tests can still be used for baseline
- Corrects for cataract and media effects
- Flags change
- MD plotted over time and regression analysis done to quantify dB change over a year
- Verifies reliability "low test reliability" "excessive false positive"

Guided progression Analysis cont...3
- Baseline:
- First two tests (automatic) are needed and average to make the baseline
- If you don’t want to use the first two tests you can manually chose other tests
 - For example: Learning curve, poor test taker
 - Ocular intervention like, High IOP which was treated during first test

Guided progression Analysis cont...4
- 30-2 and 24-2 can be used. If 24-2 is the follow-up fields then all field reports are used as 24-2 (extra points of 30-2 is not used)

GPA cont ...5
- Example of additional information with your single field printout

GPA cont -6
- Symbols used
 - Open triangle p<5%
 - Half filled p<5% two occasions
 - Solid triangle p<5% three occasions
 - X out of range
- Possible progression – three or more points show change at least two consecutive tests
- Likely progression – three or more points show change in at least three consecutive tests
Visual Field Index

- Percentage of normal age adjusted field
- Greater the number more normal
- Trend over time is given with a probability values as well

Summary

<table>
<thead>
<tr>
<th>Medications</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early glaucoma</td>
<td>Moderate to advanced glaucoma</td>
</tr>
<tr>
<td>Compliant patient</td>
<td>Chances of serious loss of vision</td>
</tr>
<tr>
<td>Target IOP achieved</td>
<td>Unable to take medications- various reasons</td>
</tr>
<tr>
<td>Works with life style/physical ability</td>
<td>Unable to achieve and maintain target IOP</td>
</tr>
<tr>
<td>Not too many medications (ocular)</td>
<td></td>
</tr>
</tbody>
</table>

Laser Therapy

- Enhances aqueous outflow
- How does it cause increase outflow
- Exact mechanism unknown
 - Mechanical theory
 - Mechanical tightening of trabecular meshwork
 - Opens adjacent untreated spaces
 - Laser induced cellular changes
 - Macrophages migrate to the location
 - Clears trabecular debris

Argon Laser Trabeculoplasty- (ALT) theory

- Enhances aqueous outflow
- How does it cause increase outflow
- Exact mechanism unknown
 - Mechanical theory
 - Mechanical tightening of trabecular meshwork
 - Opens adjacent untreated spaces
 - Laser induced cellular changes
 - Macrophages migrate to the location
 - Clears trabecular debris
Argon Laser Trabeculoplasty - indications

- Open angle
- Require decrease in IOP
- Both POAG and secondary like pseudoexfoliation or pigmentary
- Poor candidates
 - Angle recession, uveitic glaucoma, aphakia, high IOP (35 or greater), high episcleral venous pressure
 - Very young individuals
 - Previous 360 degree ALT

Summary of Argon Laser Trabeculoplasty

- Laser burns to trabecular meshwork
- Enhances aqueous flow and thus lowers IOP
- Usually an adjunct therapy
- Treatment benefit seen 4-6 weeks
- 180 degrees at a time, 360 can be done
- Retreatment not effective

Selective Laser Trabeculoplasty (SLT)

- Selectively targets melanin pigment of TM
- More safe compared to ALT (because lower power)
- Equally effective as ALT
- Can be repeated if first attempt is not effective

Mechanisms of action SLT

- 5-8 fold increase in monocytes and macrophages in TM
 - after treatment with SLT
- Hypothesis
 - Injury via laser causes releasing of chemoattractant
 - This in turn recruits monocytes that are transformed into macrophages
 - Macrophages clear pigment granules and exit via Schlemm’s canal

ALT versus SLT

- SLT preferred
- Unlike ALT, SLT does not scar
- Autopsy specimens – confirm no coagulative damage after SLT
- SLT can be repeated

Peripheral iridotomy

ANGLE CLOSURE GLAUCOMA

Indications
- Acute primary angle closure
 - One to two days after attack
 - Once eye is settled and edema is cleared
- Fellow eye of acute primary angle closure
 - 50% chance of angle closure
- Chronic angle closure
- Narrow or occludable angle

Contraindications
- Significant edema
 - Unable to visualize iris
- Thick iris
 - Dilated pupil, bunched up iris
- High risk of complications
 - Significant inflammation

Laser iridoplasty
- Procedure to open an appositionally closed angle
- Series of laser burns
 - Low power
 - Large spot
 - Longer duration
 - Extreme peripheral iris
- This causes tightening of peripheral iris creates a space between anterior iris surface and trabecular meshwork

Trabeculectomy
- Creates a fistula that allows aqueous from anterior chamber to subtenons space
- Fistula guarded by scleral flap
- The bell should not be fully vascularized neither completely avascular
- Mytomycin C (alkylating agent) or other antimetabolites (example 5-fluorouracil) prevents scarring and failure
Glaucoma implants

- Indications
 - Uncontrolled glaucoma
 - Poor candidates for trabeculectomy
 - Neovascular glaucoma,
 - Penetrating keratoplasty or retinal detachments with glaucoma
 - ICE syndromes traumatic glaucoma, previously failed trabeculectomy

Case 1 LW

- 50 YO BF
- Vn 20/40- and LP OS
- No improvement with PH
- Slitlamp
- OD cortical cataract
- OS Total traumatic cataract
- IOP 23 OD 28 OS
- Gonioscopy – Open angle CBB all quadrants OU
 - TM pigmentation even 360 degree grade 2

VF 24-2

Pachymetry

Scan quality - acceptable
Inferior and superior average thickness decreased
Overall decrease in rim tissue as well
• Rx Travatan Z qhs
• RTC 1 month

• 1 month later – IOP OU 26 mmHg
• Non compliant - discussed importance of IOP lowering
• RTC 1 month

• 1 month later IOP OU 26 mmHg - reported non compliance due to family visit
• Educated and RTC 1 month

2/1/2012

Case 2 GH

• 2009
• Painful eye OS intermittent 1 year, nothing helps
• Vn OD 20/40
• OS NLP
• Slitlamp
 • OD NS 2+
 • OS corneal edema, iris neo
• IOP OD 24 mmHg, OS 61-74 mmHg

• Visit 4
• Reported compliant to medications
• IOP
 • OD 15 mmg (11 mmHg lower than highest)
 • OS 16 mmHg (12 mmHg lower than highest)

• RTC 3-6 months
• IOP recheck, VF 24-2
• Discussion - compliance important, rechecks important, Laser an option in non-compliant patients.

Tx
• In office Iopidine, tomolol, acetazolamide 250 mg 2 tabs
 • Side line point 500 mg STAT and then BID
• IOP lowered to 53 mmHg OS

 • CD OD 0.75 H/V 0.85
 • Macula soft drusen OD
 • OS no view

• Plan- Px referred
• OD Xalatan qhs, timolol BID
• OS Timolol BID and report to ophthalmologist for further management.

• 2 years later...

2011

• No new complaints. Stopped all medications 2 years
 • Not sure why?
• OD 20/70 OS NLP (no pain)
• Slit lamp
• OD
• OS
• Nuclear sclerosis
• Corneal edema, Iris neo
• Cortical cataract
• PSC
• IOP 18 mmHg OD
- Fundus evaluation
- Clinically significant diabetic macular edema
- Diabetic retinopathy
- HTN retinopathy

2009 vs 2011

- CD 0.75 H 0.85 V CD 0.85 V and H

Re-educated on importance of medications.
- Start Travatan Z qhs
- Due to non-compliance and monocular – referred for surgical consult
- Surgeons opinion was to opt for laser as first choice and trabeculectomy if laser treatment not successful.