An Overview of the **ANSI Standards**

Ed De Gennaro Richmond, Virginia

ANSI In Perspective

- Essentially a consulting firm
 Z80 Standards Committee formed in 1956
 It is a private, nongovernmental agency
 Unlike FTC, FDA, OSHA
 It issues standards not regulations
 Childread Instants

How many ANSI standards are there today?

Standards Categories

- Eyeglasses (Rx, safety & plano sun; RX frames)
- Contact lenses and care solutions
 Ophthalmic instruments
 Computerized equipment
 Medical devices (IOL's, shunts)

What basic categories do the standards fall into?

Current ANSI Standards

- Z80.1 Prescription Ophthalmic Lenses Recommendations
 2009
 Z80.3 Nonprescription Sunglasses and Fashion Eyewear 2010
 Z80.5 Requirements for Ophthalmic Frames 2010
 Z80.7 Intraocular Lenses 2002
 Z80.9 Low Vision Aids Requirements 2010

Standards Con't

- 280.10 Tonometers 2009
 280.11 Laser Systems for Corneal Reshaping 2007
 280.12 Multificaal Intraocular Lenses 2007
 280.13 Phakic Intraocular Lenses 2007
 280.13 Phakic Intraocular Lenses 2007
 280.13 Contenters 2008
 280.18 Contact Lens Care Products 2010
 280.20 C.L. Standard Terminology, Tolerances,
 Measurements and Physiolchemical Properties (Combines
 280.21 Instruments General Purpose Clinical Visual Acuity
 Charts 2010
 280.23 Corneal Topography Systems 2008

Standards Con't

- Z80.24 Information Interchange for Ophthalmic Optical Equipment 2007
 Z80.25 Instruments Fundamental Requirements & Test Methods 1996
 Z80.26 Data Processing & Interchange for Ophthalmic Instruments 1996
 Z80.27 Aqueous Shunts for Glaucoma Application 2001
 Z80.28 Methods for Reporting Optical Aberrations of Eyes -2010
- 2010 Z80.30 Toric Intraocular Lenses 2010 Z80.31 Specs for SV Ready-To-Wear Near Vision Specs -2012
 - Z87.1 Occupational and Educational Eye and Face Protection Devices- 2010

Most Standards Will Have

ANSI policy statement

- Forward
- References
- Definitions Classification
- General requirements

Most Standards Will Have

2009

- Test methods
- Identification
- Identification of the standard
- Tables
- Annexes
- Figures

ANSI Policies Statement

Provide for due process

- Consensus = substantial agreement More than a majority but not unanimity
- Completely voluntary
 Can manuf., market, etc. outside the standard
 ANSI does not develop & will not interpret
- Secretariat or sponsor may interpret
- Must reaffirm, revise or withdraw within 5 years

When was the last revision of the dress wear Standard (Z80.1)?

Overview of Z80.1

- Covers prescription eyewear and custom made plano sunglasses
 1995 put ISO power tolerance into the Standard
 Reverted back to the power tolerances of the 1987 Standard

- Includes automatic focimeters and better describes the method for measuring prism

Z80.1 History

- 1956: Z80 committee formed Developed 3 drafts, 2 for manufactured lenses, 1 for fabricated glasses
- 1964: Issued combined standard for manufacturers & fabrication
- 1970: Committee reorganized
 - OSA as secretariat

Z80.1 History

- 1972: Broadened scope to include:

 - Sunglasses and fashion eyewearFDA impact requirements
- 1979: A shift from mass-produced lenses to lab.
 - Attempt to define state-of-the-art
 - Not all parameters would be met "Requirements" became "Recommendations"

Z80.1 History

- 1982: OLA becomes secretariat
 1985: Z80 committee becomes accredited
 1987: Defines range of UV absorbing lenses

- lenses Expands appendices Expands multifocals Still a "Recommendation" 1995: Applies ISO power standards 1999: Shifts back to 1987 tolerances after finding 1995 tolerances too restrictive 2005: Corrects the change in power tolerance methodology

Scope

- Applies to the processing of lenses • in edged or assembled form
- A guide for labs and dispensers
- Should apply to uncuts from labs too
- Does not apply to nonRX sunglasses

Purpose

- Shift from mass-produced to lab.
 Does not represent the "state-of-the-art"
 sets quality goals instead
 Difficult to meet all requirements simultaneously

- 25% do not on average
 Expresses desirable technical concepts
 Not designed as a regulatory instrument

Tolera		vistance Vision & M	Refractive	Power
Absolute Power of Highest Power Meridian	Tolerance on Meridian of Highest Power	Cylinder = 0.00 D, = 2.00 D	Cylinder >2.00 D, = 4.50	Cylinder > 4.50 D
From 0.00 up to 6.50	± 0.13 D	± 0.13 D	± 0.15 D	± 4%
Above 6.50	± 2%	± 0.13 D	± 0.15 D	± 4%

Tolera		istance I ssive Additio	Refractive	e Power
Absolute	Tolerance	Cylinder	Cylinder	Cylinder
Power of Highest	on Meridian of Highest	= 0.00 D, = 2.00 D	>2.00 D, = 3.50	> 3.50 D
Power Meridian	Power			
From 0.00 up to 8.00	± 0.16 D	± 0.16 D	± 0.18 D	± 5%
Above 8.00	± 2%	± 0.16 D	± 0.18 D	± 5%
	$\langle \langle \rangle$			

Cylinder Axis Tolerance

Cylinder Power		>0.25 up to 0.50		>0.75 up to 1.50	>1.50
Axis Tolerance	(+/-) 14	(+/-) 7	(+/-) 5	(+/-) 3	(+/-) 2

What is the tolerance for the sphere power meridian? +4.50 -1.25 175
■ (+/-) 0.13D ■ b. (+/-) 0.15D
• c. (+/-) 0.18D
■ d. (+/-) 0.25D

1/14/2013

How much prism lens h	
a. 0.25^	
b. 0.33^	
c. 0.50^	
d. 0.66^	

Prismatic Power Tolerance For a single lens

- 0.33∆
- Note: A placement error of 1mm is allowed in any direction

Vertical Prism Tolerance For a Mounted Pair

- 0.00D to 3.375D = 0.33∆
- 1/3 for the right, 1/3 for the left, 1/3 for the mounted pair
- For powers above 3.375D, a 1mm error between the two PRPs.

Ordered:	Received:	
OD -1.00	OD -1.00 1/3^ BU OK	
OS -1.00	OS -1.00	
OD	-1.00 1/3^ BU OK	
OS	-1.00 1/3^ BU	
OD	-1.00 1/3^ BU NG	
OS	-1.00 1/3^ BD	
OS		error is allowabl

Horizontal Prism Tolerance For a Mounted Pair

- 0.00D to 2.75D = 0.67Δ
- 2/3 for the right, 2/3 for the left, 2/3 for the mounted pair
- For powers higher than 2.75D, a 2.5mm placement error is allowed

Ordered:		R	eceived:	
OD -3.00	OD -3.00 2/3	OD -3.00 2/3^ BO OK		
OS -3.00	OS -3.00			
OD -	-3.00 2/3^ BO	ок		
OS -	3.00 2/3^ BI			
OD -	-3.00 1/3^ BO	ок		
OS -	3.00 1/3^ BO			
OD -	-3.00 1/3^ BI	ок		
OS -	3.00 1/3^ BI			

Prism Tolerance For a Mounted Pair of Progressives

- Vertical:
- Up to 3.375 = 0.33∆
 For higher powers, a 1mm placement error Horizontal
- Up to 3.375 = 0.67∆
- For higher powers, a 1mm PD error is allowed

What is the maximum allowable horizontal error for this mounted pair of lenses? -8.00 -1.75 x 20 -7.50 -1.00 x 165

- a. 1/3^

- c. 2/3^
- d. none of the above

Answer

d. A 2.5mm PD placement error is allowable for a mounted pair

1/14/2013

How much can a specified base curve be off?				
Example: Ordered B.C. = +4.50				
∎ a. 0.25D				
• b. 0.50D				
■ c. 0.75D				
• d. 1.00D				

Answer: c. 0.75D

- For spherical base curves
 use a lens clock or sphereometer
 must be for index 1.530
 For lenses using 546.07nm
 instrument must be calibrated for this
 For aspherics
 measure concave spherical curve
 measure back vertex power
 calculate the front nominal curve

How much warpage is permissible?

- a. 0.25D cylinder
- b. 0.50D cylinder
- c. 0.75D cylinder
- d. 1.00D cylinder

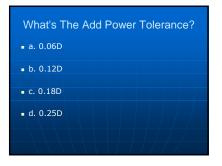
1.00 diopters!

"This recommendation need not apply within 6mm of the mounting eyewire."

What's the segment height tolerance for a mounted pair? a. 0.5mm


```
    c. 1.5mm
```

d. 2.0mm


(+/-) 1mm for each lens and 1mm for the pair

- This rule also holds true for progressive lenses using the fitting cross as the reference point.
- For horizontal placement, 2.5mm is allowed. Inset should be symmetrical unless a monocular NPD was ordered.
- For progressives, the near reference point is set by the manufacturer. so the horizontal placement tolerance is exempted from this standard.

(+/-) 0.3mm!

"The center thickness shall be measured at the prism reference point of the convex surface and normal to this surface."

	b. 0.12D	
Add Power	Up to 4.00D	>4.00D
Add Tolerance	(+/-) 0.12D	(+/-) 0.18D
	bove +4.00 are u red low vision aid:	

Where Can I Get The Standards?

American National Standards Institute 11 West 42nd Street New York, NY 11036 (212) 642-4900 http://www.ansi.org/

