Slide 1

NEW TECHNOLOGY RAPID FIRE SESSION

Slide 2

David Geffen, OD, FAAO
CONSULTANT / INVESTIGATOR for:
- Acufocus
- Alcon
- AMO
- Amnis
- Bausch + Lomb
- Cooper Vision
- Cusanese
- Olenove
- Optothonix
- Vistakon
- Vmax
- Wavelight / Alcon

Slide 3

IOP Sensing

STMicroelectronics is working with Swiss company Sensimed to develop a contact lens with nano-sensors fabricated in silicon-based SEMS technology, which can be used to measure the shape of the human eye and could be used in the early diagnosis of conditions such as glaucoma.
Slide 4

1.5 mm³ IOP Monitor

- Continuous IOP monitoring
- Wireless communication
- Energy autonomy
- Device components
 - Solar cell
 - Wireless transceiver
 - Cap to digital converter
 - Processor and memory
 - Power delivery
 - Thin film Li-ion battery
 - MEMS spectacle socket
 - Biocompatible housing

Slide 5

Another IOP Sensing Contact Lens

These contact lenses with a pattern of conductive silver wires could be used to measure pressure inside the eye and study glaucoma. University of California

Slide 6

Contact lenses to detect blood sugar changes

Developed by mechanical engineering professor Jin Zhang at the University of Western Ontario in Hamilton, the new technology benefits from hydrogel contact lenses made from eyebrow and lasik patches. The nano-particles used in these lenses react with glucose molecules found in tears, causing a chemical reaction and subsequently changes in their color.
Slide 7

Photochromic contact lenses
- Nano sized tunnels that can fill with dye
- Faster response than photochromic spectacles

Slide 8

Drug dispensing contact lenses
- Ciprofloxacin release via a bandage contact lens
- Month or longer drug delivery for other medications

Slide 9

Microsoft and UW
Microsoft and the University of Washington are developing an electronic contact lens that can non-invasively monitor and wirelessly report blood sugar levels.
Researchers at the University of Washington are incorporating micro-circuitry for augmented reality applications. Diffraction is expected to limit the scope of the application.

Screen too small for rich content
Narrow Field of View
Unattractive Styling
Excessive Bulk

Solution: Contact Lens Enabled Wearable Display

Slide 13

Innovega Inc. iOptik™ Contact Lens

- Outer lens: sharply view of normal surroundings (50% of population need corrective lenses)
- Center lens: streams HD/3D Digital Media from eyewear flat panels or projectors

Slide 14

VMAX IN PRACTICE

David I. Geffen, OD, FAAO

Slide 15

Refraction
- Over 100 years the same method
- Confusing for the patient
- Inaccurate
- Low Tech
Slide 16

PSF Refraction Is More Sensitive
- Changes in 0.05D are now noticeable

Slide 17

PSF Refraction Is More Sensitive
- Changes in 0.05D are now noticeable

Slide 18

Vmax
- Ease of use
- Ease of patient understanding
- Extreme Accuracy
- High Tech
Slide 19

Practice Benefits
- High Tech Look and Feel
- Get out of the Dark Ages
- Patients hate “Which is Better, One or Two”
- Greater Reliability

Slide 20

Results

Slide 21

Patient Responses
- Easier to tell the difference
- High tech
- Less strain
- Feels more accurate
Slide 22

RHA™
Optometrist’s Gateway to the RPE

FDA approved
Health Canada approved
European CE Mark obtained

ANNIDIS HEALTH SYSTEMS

Slide 23

Multi-spectral Imaging

- Provides progressive views through the retina from the ILM to the choroid
- Creates a series of monochromatic en face fundus spectral slices for added diagnostic insight

Slide 24

Conventional vs. Multi-Spectral

[Diagram showing conventional and multi-spectral imaging compared]
Spectral Slicing

RHA™: MSI Technology Spectral slices allow for fundus dissection of the retina

Spectral slices allow for fundus dissection of the retina.
Slide 28

RHA™: MSI enables a spectral dissection for localization and interpretation of retinal pathologies

<table>
<thead>
<tr>
<th>Monochromatic Light Sources</th>
<th>Examples of Structures Best Viewed with MSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greens</td>
<td>Superficial Structures Highlighted</td>
</tr>
<tr>
<td>Yellows, Ambers, Reds</td>
<td>Mid Retinal Structures Highlighted</td>
</tr>
<tr>
<td>Infrareds</td>
<td>Deep Retinal Structures Highlighted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superficial Structures Highlighted</th>
<th>Example Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epiretinal membranes, retinal tears, cysts, foveolar folds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mid Retinal Structures Highlighted</th>
<th>Example Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal vasculature, hemorrhages, telangiectasias, exudates, drusen, macular edema</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deep Retinal Structures Highlighted</th>
<th>Example Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal pigment epithelium, macular pigmentary abnormalities, macular changes</td>
<td></td>
</tr>
</tbody>
</table>

Slide 29

PID 79 - Optos

[Image of a composite image]

Slide 30

PID 79 - Optos

[Image of a green-processed image]
Return on Investment

To date, 18% of my patients screened on the RHA have had suspect areas of interest to pursue further. This has drastically increased the utility of my OCT and I am now selling 4 times more nutriceuticals.

Dr. David Geffen

Technology Overview

- Revolutionary tear collection
- Non-invasive
- Gives access to untrained users (CLIA waiver)
- Integrates into technician workflow
- Novel lab-on-a-chip
- Less than 50 nL required
- Platform for rapid electrochemical biomarker assays
- Sample-to-Answer in less than 30 seconds
Tears as an in vitro Diagnostic Platform
- Tears are an ideal matrix for non-invasive testing
 - Derived from blood
 - Largely acellular
- Tears known to have thousands of proteins & genes
 - Potential for many ophthalmic & non-ophthalmic markers
- Biomarker normalization using osmolarity
 - Fundamentally corrects for tear film instabilities
 - More accurate reporting of proteins, genes, metabolites
 - Combines multiple markers & payments on a single chip.

Tear Hyperosmolarity - the Central Mechanism Causing Ocular Surface Inflammation, Cell Damage and Symptoms in Dry Eye Disease
DEWS Report, 2007
- Tear hyperosmolarity stimulates a cascade of inflammatory events
 - Inflammatory tear cytokines and MMPs
 - Apoptotic cell death
 - Reduced and altered tear mucins
 - Reduced lubrication
 - Up-regulation of MHC I/II expression on surface cells
 - Disruption of epithelial junctions
 - Intra-cytoplasmic changes in surface cells
- Tracks severity of disease linearly and tracks response to therapy and is tightly linked to tear film instability

Using Tear Osmolarity in the Diagnosis of Dry Eye Disease
- One or both eyes > 308 mOsms/L or larger than a 8 mOsms/L difference between eyes
- Normal subjects have a tight band of variability
- Patients with mild/moderate DED show variability
 - Variability in the diagnosis of this stage, in which compensatory mechanisms are still operative in response to environmental stress
- Variability confirms rather than confounds the DED diagnosis
 - Am J Ophthalmol 2011 May
- Patients with moderate to severe DED have tear osmolarity which varied between eyes and over time but generally remain above within the abnormal range
Slide 52

Osmolarity Disposable Chip

Slide 53

TearLab™ Tear Collection

Slide 54

Historical Diagnostic Tests
- Pt questionnaire
- Schirmer Test
- Tear meniscus height
- Tear break-up
- NaF
- Lissamine Green or Rose Bengal
- Phenol thread test
- Interferometry (not practical in clinical setting)
Osmolarity is the "gold standard" test for Dry Eye Disease:
- 45 years peer reviewed research
- Osmolarity has been added to definition of Dry Eye
- Global marker of Dry Eye, indicating a concentrated tear film

Clinical Test PPV
- Osmolarity: 87%
- Schirmer: 31%
- TBUT: 25%
- Staining: 31%
- Meniscus Height: 33%

Source: DEWS Report, Ocular Surface April 2007 Vol 5 No 2, & Tomlinson A, et. al., IOVS 47(10) 2006

Diagnose & Classify Patients Quickly

ORA System™: Designed to Optimize Every Cataract Procedure

ORA's all new Optiwave™ technology takes intraoperative wavefront aberrometry to a new level, providing surgeons a higher level of confidence.
ORA System™ (Optiwave™ Refractive Analysis)

- Provides intra-operative refractive information
- Attaches to most surgical microscopes for on-demand, intraoperative measurements of sphere, cylinder and axis
- Enables real-time surgical course correction

"Get it right – right on the table"

Every ORA system connects live to WaveTec servers to capture every procedure and push software upgrades.

ORA System™ Helps Surgeons Optimize Outcomes for ALL Cataract Patients

- IOL power calculations using aphakic refraction
 - Guides IOL selection
 - Post-refractive IOL power calculations
 - Standard monofocal and aspheric IOLs
 - Presbyopic IOLs
 - Toric IOLs (IOL power)
- Guides toric IOL cases
- Guides LRI cases
 - Whether done in the phakic, aphakic, or pseudophakic mode

Sample ORA Screen Shots
Slide 61

ORA Toric IOL Results Cumulative Post-op Refractive Cylinder

- Cumulative distribution of post-operative refractive cylinder with cumulative percentages.

n = 309
Mean Pre-op Keratometric Cylinder: 1.83 D +/- 0.88 D
Mean Post-op Refractive Cylinder: 0.49 D +/- 0.50 D

Slide 62

Today’s Modern Cataract Surgery

Is it really refractive?

Only 50% of cataract patients get within 0.50 D of attempted correction*.

* Represents average of published studies with outcomes ranging between 40% and 60%.

Slide 63

ORA System™ Enables Refractive Outcomes

While 50% of ORA patients get within 0.50 D of attempted correction.
Slide 64

What to Expect After Surgery – Day One

The vast majority of patients will be seen by the surgeon at day one, but if not:

• Look for a quiet anterior chamber
• Continue prescribed therapy (e.g., antibiotics, steroids, NSAIDs)
• Check ocular surface

Slide 65

LASER REFRACTIVE CATARACT SURGERY

Slide 66

Traditional Cataract Surgery

Femtosecond Lasers

Cataract
LenSx (Alcon)
Catalys (OptiMedica)
LensAR (LensAR, Inc.)
IntraLase (Abbott)
Femto LDV (Ziemer)
Wavelight FS200 (Alcon)

VICTUS (B+L/TPV)
Corneal (LASIK flap)

The VICTUS platform is cleared for creation of a corneal flap in patients undergoing LASIK surgery or other treatments requiring initial lamellar resection of the cornea, and for anterior capsulotomy during cataract surgery.

Catalys – engineered for laser cataract surgery

Every other laser performing cataract surgery was originally designed for something else
The LenSx® Laser

A dynamic platform technology that will:
- Deliver true refractive cataract surgery with the precision of a femtosecond laser
- Establish Laser Refractive Cataract Surgery - a new category of the technology
- Rapidly advance the evolution of true image-guided intraocular surgery
- Advance the development of a more digitized, predictable approach to lens replacement surgery

Laser Refractive Cataract Surgery

Goal is to Improve Every Procedure, Technology and Surgeon

<table>
<thead>
<tr>
<th>Key Point</th>
<th>Improvement</th>
<th>Impact</th>
<th>Safety Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corneal Incision</td>
<td>Not Optimized</td>
<td>Induced Cylinder Infection</td>
<td></td>
</tr>
<tr>
<td>Capsulorhexis</td>
<td>Variable Sized, Not Centered</td>
<td>Variable IOL Position & Effective Lens Power</td>
<td>Capsular tears, Posterior Capsule Opacification</td>
</tr>
<tr>
<td>Lens Fragmentation</td>
<td>Excessive Ultrasound Power</td>
<td>Delayed Visual Recovery</td>
<td>Loss of Endothelial Cells, Capsule Rupture</td>
</tr>
</tbody>
</table>

LenSx® Laser Integrated OCT

Image-guided Laser Refractive Cataract Surgery
- Intuitive touch screen Graphic User Interface
 - for easy customization of all surgical parameters
- Real-time video imaging for 3D visualization
 - guides the surgeon while docking
 - for optimal surgeon control
- True image-guided surgical planning
 - enables the surgeon to precisely program size, shape, location of each incision
Traditional Lens Fragmentation

1. Initial phaco technique divides the nucleus into quadrants (Divide and Conquer)
 - Endothelial effects
2. Variations on this technique were developed to reduce phaco power
 - Chop, Quick Chop, Stop and Chop, Flip, etc.
3. Difficult to perform
4. Lens density dependent

Laser Fragmentation

Mechanism of Action

- Chop Patterns
- Liquefy Patterns

Manual Clear Corneal Incisions

- Wound architecture limited by hand-held instruments, manual incisions
- Imprecise tunnel length and geometry
- Frequently require stromal hydration to seal
- Can result in cascading intraoperative difficulties
- Fluid control, anterior chamber maintenance
- Recent literature suggests an increased incidence of post-op infection
- Incisions may be unstable at low IOPs

Slide 76

Incision Configurations Single or Multiplane

- Computerized programming of incision patterns
- Customizable geometry
 - Angle
 - Depth
 - Width

Slide 77

LenSx® Laser Corneal Incisions

- Customized wound architecture and placement
- Self-sealing incisions

Slide 78

Arcuate Incisions

Traditional, Handheld Diamond Knife

- Manually executed by “tracing” corneal marks
- Inconsistent depth control
- Unpredictable effect due to imprecise wound architecture and depth
- No image-guided surgical planning or visualization
LenSx® Laser Arcuate Incisions

Image-guided surgical planning with 3D visualization

- Real time corneal thickness
- Computer programmed incisions
 - % depth
 - incision length and position
 - 3D visualization of incision placement
- Predictable incision width, tunnel length
- Titratable incision
 - adjustable during surgical procedure
 - adjustable post-op at slit lamp

Laser Arcuate Incision

- Square edge
- Uniform depth (no ripples)
- Precise, reproducible
 - Arc shape
 - Arc length
 - Diameter

Ideal Capsulorhexis

- Reproducible size, shape and well-centered

<table>
<thead>
<tr>
<th>Too large</th>
<th>Too small</th>
<th>Irregular shape</th>
<th>Off center</th>
</tr>
</thead>
<tbody>
<tr>
<td>No capsule-IOL overlap</td>
<td>Phimosis</td>
<td>Difficult phaco maneuver</td>
<td>IOL tilt</td>
</tr>
<tr>
<td>IOL decentration</td>
<td>Edge catch</td>
<td>Visual axis</td>
<td></td>
</tr>
<tr>
<td>IOL decentration</td>
<td>Edge catch</td>
<td>Visual axis</td>
<td></td>
</tr>
</tbody>
</table>
Slide 82

LenSx® Laser Capsulorhexis

- Reproducible, Precise Circular Shape and Diameter Capsulotomy
- Enables Image-Guided Centration of Capsulotomy

Slide 83

Effective Lens Position (ELPo)

- Assumed value, from empirical data (A constant and surgeon factor)
- A significant source of IOL power error (Norby, 2008)
 key to post surgery refraction (Hill, 2009)
- Size of capsulorhexis effects ELPo (Cekic, 1999)

Slide 84

Patient Expectation

LenSx® Laser technology provides the patient:

- Perceived benefits of a laser procedure
 - Computer controlled precision
 - Procedural predictability
- A comprehensive, advanced technology approach to lens replacement surgery
- A truly premium, value-added surgical experience
Slide 85

Practice Performance

LenSx® Laser technology provides the surgeon:
- Known benefits of femtosecond technology
- Improved accuracy of all incisions
- Predictability at every step
- True image-guided intraocular surgery
- Opportunity to create optimal wound architecture
- Precise capsulotomy design for every IOL
- A strong value proposition
- A message that easily resonates with patients and staff

Slide 86

Standard-Of-Care Technology

- Photosensitive Silicone Material
- Precise, Non-Invasive Post Operative Adjustments
- 2 Diopter Correction for Myopia, Hyperopia, or Astigmatism
- Non-Toxic, Biocompatible
- Foldable

Slide 87

Why the Light Adjustable Lens?

- Predictable correction of residual refractive error after lens implantation for optimal distance vision
- Spherical and cylindrical errors up to 2D
- Customized presbyopia solutions for near and intermediate vision
 - Adjustable Monovision
 - Customized Near Add
 - Asphericity Control
Slide 88

Light Adjustable Lens

- Foldable 3-piece silicone IOL
- Blue PMMA modified haptics
- 6.0 mm biconvex optic
- Overall length 13.0 mm
- Manufactured in range from 10.0 D to 30.0 D
 - (+7.0 D to +25.0 D in 0.5 D steps)

Slide 89

Mechanism of Power Adjustment

Matrix Photosensitive silicone macromer
- Polymerized macromer
- Unpolymerized macromer diffuses to central region & causes swelling
- Increased power

(a) (b) (c)

Slide 90

Light Delivery Device

Customized Treatment

- Standard slit-lamp footprint
- Unlimited flexibility for lens modification
- The heart is the digital mirror device (DMD), which allows customized generation of spatial irradiance profiles
Slide 91

Adjustment profiles:
Sphere: ± 2.0 D; Cylinder: -2.0 D

Myopia Hyperopia Astigmatism

Hyperopia
Astigmatism
Myopia

Slide 92

Customized Presbyopia Solutions

- Adjustable Monovision
- Customized Near Add
- Controlled Addition of Asphericity

Slide 93

Customized Near Add

Pre-irradiation interference fringes

+2.1 D Add over 1.6 mm zone
+3.5 D Add over 2.0 mm zone
+2.1 D Add over 2.5 mm zone
+3.2 D Add over 2.5 mm zone
Control of Asphericity

Induction of positive or negative spherical aberration to increase depth of focus

CONCLUSION

The Calhoun Vision Light Adjustable Lens
Predictably achieves excellent distance acuity
A variety of options to customize near and intermediate uncorrected acuity

THANK YOU