Optical Coherence Tomography

Optical: Light-based

Coherence: property of light waves in which the oscillations maintain a fixed relationship to each other

Tomography: Cross-sectional imagery

OCT Image Acquisition

“Cube of Data”

- Similar to ultrasound but uses light instead of sound to image tissue
- Beam of light is directed into tissue and reflections coming from different layers of the tissue are received by a detector

OCT Image Acquisition Table:

<table>
<thead>
<tr>
<th>OCT Version</th>
<th>Scans/sec</th>
<th>A-scans/Pixel</th>
<th>Image Density</th>
<th>RNFL Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT1 1996</td>
<td>20</td>
<td>500</td>
<td>512 x 1024</td>
<td>5</td>
</tr>
<tr>
<td>OCT2 2000</td>
<td>20</td>
<td>500</td>
<td>512 x 1024</td>
<td>5</td>
</tr>
<tr>
<td>OCT3 2002</td>
<td>20</td>
<td>500</td>
<td>512 x 1024</td>
<td>5</td>
</tr>
<tr>
<td>Cirrus HD-OCT 2007</td>
<td>20</td>
<td>1024</td>
<td>1024 x 4096</td>
<td>20</td>
</tr>
</tbody>
</table>

At first, OCT was slow

- First OCT images taken by Huang and Schuman over night in James Fujimoto’s laboratory, MIT

OCT – Time Domain Stratus

Strengths:
- Provides Cross Sectional images
- Useful to calculate RNFL thickness
- Cross section scans useful for retinal pathologies
- Database comparisons

Weaknesses:
- Slow scan speed (500 A-scans/second)
- Limited data for glaucoma, 768 pixel (A-scan) ring for RNFL
- Limited data for retina, 6 radial lines with 128 A-scans (pixels) each
- Macula maps 97% interpolated
- No progression analysis
- Location of scan ring affects RNFL results
- Prone to motion artifacts because of slow scan speed
- Poor optic disc measurements
Time Domain OCT susceptable to eye movements

- 768 pixels (A-scans) captured in 1.92 seconds is slower than eye movements
- Stabilizing the retina reveals true scan path (white circles)

Stratus vs. SD-OCT

- 10 micron axial
- 500 a-scans per sec.
- 512 A-Scans per B-Scan
- 1024 d-points e A-Scan
- 2 mm deep
- 131,072 total d-points
- Eye Tracking!!

Spectral Domain: Why??

- Enhanced reproducibility and registration
- Objective quantitative data that supports standardization of care at an expert level.
- Pinpoint correlations in ocular structure and function, matching areas of abnormal tissue with attendant vision problems.
- Enhance sensitivity and specificity in disease detection and reduce uncertainty in glaucoma suspects.
- Improved software is available to help detect *disease progression*.

OCT Technology: Advantages

- Has ushered in a whole new era of retinal care
 - Diagnosis
 - Response to treatment
- New diagnoses once only speculated
 - VMT
 - Macular Schisis
- Information once only available through histopathology or dissection
- Can replace FA in some cases
OCT Technology: Caveats

• DOES NOT take place of clinical exam!
• DOES NOT take place of careful history taking
• DOES NOT replace FA in some cases!
• DOES NOT REPLACE COMMON SENSE!

• ONE MORE PIECE OF CLINICAL PICTURE
 – Not the end all be all!!
 – Not to be taken in vacuum

Plaquenil Toxicity: How Prevalent?

Not Recommended for
Fundus photography Recommended for documentation, especially at baseline; but not sensitive for screening insufficient resolution for screening

Time-Domain OCT Fundus photography
Phosphene angiography Use only if preclinical changes are needed
Full-field ERG Important for evaluation of established toxicity, but not for screening
Amsler grid Use only as anadjunct test
Color testing Easy Use only as anadjunct test
Quick (3-5)

EOG Questionable sensitivity

EOG = electro-oculogram; FAF = fundus autofluorescence; mfERG = multifocal electroretinogram; SD-OCT = spectral domain optical coherence tomography.

Spectral Domain: Many Options

• Ease of use
• Customer support
• Integration of other technology
 – FAF
 – Color
 – MSI
• Reputation of company

Table 2. Chloroquine and Hydroxychloroquine Screening Procedures

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Baseline examination within first year of use; Annual screening after 1 year of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Screening Procedures</td>
<td>Onset examination (dilated retinal examinations are important for detection of associated retinal disorders, but should not be relied on for screening low sensitivity, e.g., macular edema)</td>
</tr>
<tr>
<td>Automated visual field</td>
<td>White S-2 threshold testing. Interpret with a low threshold for abnormality, and then if abnormalities appear</td>
</tr>
</tbody>
</table>

In addition, if available, perform one or more of the following objective tests:

- SD-OCT: Rigor test that can be done routinely can show abnormalities very early, even before field loss.
- mfERG: Valuable for evaluation of superior or nasal visual field loss, may show damage in areas than visual field testing.
- FAF: May validate other measures of toxicity; can show abnormalities earlier than field loss.
How to “Read” a Printout

• **FIRST!** Signal Strength
 – A **KEY** indicator of image quality
 – Should be 7/10 or higher on Cirrus
 – DO NOT interpret poor quality scan as “red” disease

• Well centered image
• No evidence of movement artifact
• Review Plots and Displays
 – Thickness Map and Deviation Map

Basic Interpretation of OCT B-Scans: What can we see?

- **Retinal Contour:** Normal/Abnormal
- **Thickness:** Thick or thin?

- **Artifacts**
 - Motion Blur
 - Shadows/Blocking
 - Breaks/Blinks
 - Algorithm Failure: Thickness Error/Artifact/Straight-Line Error
 - Technician Error

- **Pathology**
 - Pre Retina: PVD/Floaters/Asteroids/Vit. Attachments/Traction/ERM-PMF
 - Cystoid/Diffuse Edema/Retinal Holes/Papilledema/Optic: Pit
 - Drusen/ONH Drusen/RPE/Geographic Atrophy
 - Neovascularization: Choroidal/Neovascularization, Tumor, Nerve
 - Outer Retina/Choroidal/RPE/LE

Macular Thickness Normative Data

Macular thickness is compared to an age-matched normative database as indicated by a stop-light color code.

- **Normal Distribution:**
 - 1% of the normal population
 - 3% of the normal population
 - 3% of the normal population
 - 5% of the normal population
 - 10% of the normal population

- **Stop-light color code:**
 - Green: within ±2 SD of the mean
 - Yellow: within ±3 SD of the mean
 - Red: outside ±3 SD of the mean

Macular Cube Scan

With resolution of 5µm and repeatability of 2.5µm, Cirrus HD-OCT captures a dense cube of scan data in just 2.4 seconds. Proprietary algorithms provide 2-D and 3-D images, layer segmentation and optical biopsies for assessment of the retinal condition and precise registration allows identification and evaluation of change.

Cirrus HD-OCT Healthy Macula

- **NFL:** Nerve Fiber Layer
- **IS/OS:** Inner/Outer Segmental Boundary
- **OPL:** Outer Plexiform Layer
- **IS/OS:** Inner/Outer Segmental Boundary
- **RPE:** Retinal Pigment Epithelium

13 Retinal Layers!
Macular Hole

- Full thickness macular hole OS
- Consult with retinal specialist
 - Felt that due to duration of situation, unlikely that any surgery would have meaningful benefit on vision
 - RTC q 6 mos
 - Monocular precautions including polycarbonate RX

Macular Hole

- Present as a circular to oval depression of varying degrees in the avascular area of the macula
 - May have surrounding cuff of edema
- Most common cause is idiopathic
 - Other causes include blunt trauma, severe myopia, solar retinopathy, CME
- Highest incidence in 7th decade of life
- Women 2x as often as men

Macular Hole

- Vision typically 20/80 to 20/200 with full-thickness hole
- If pt has macular hole in one eye, 28-44% chance of macular hole in other eye w/o a PVD
 - If PVD already, very little chance
- Watzke-Allen sign useful to differentiate true hole from similar appearance
- OCT very useful

VMT: Vitreomacular Traction

- VMT syndrome is characterized by a partial detachment of the posterior detachment with persistent adherence to the macula
 - Can lead to CME, ERM, and macular hole formation
- Once thought to be relatively rare, with advent of OCT now being seen more and more
 - In one study, 8% of pts were thought to have VMT by clinical observation only, but 30% by OCT

VMT

- More commonly encountered in older women
 - Can occur in either sex, and age, no apparent racial predilection
- Aphakia and pseudophakia are protective, as these patient typically have a complete PVD
- Pts may report decreased vision, metamorphopsia and photopsia
VMT
- Clinically, very hard to diagnose
 - PVD with adherence to macular area
 - Can present as macular surface wrinkling/striae, similar to ERM, or loss of foveal reflex
 - May also note a thickened posterior hyaloid membrane
 - Retinal blood vessel distortion straightening may be present
 - Retinal thickening/macular edema may be associated
- OCT IS THE KEY!!!!

VMT
- Natural progression of disease is rather variable
 - Slow progression possible with near normal acuity
 - Approx 10% will have spontaneous PVD and resolution
- Therefore, close monitoring may be advised for some patients

VMT
- In patients with poor vision, or symptomatic, a pars planar vitrectomy (PPV) may be considered
 - Duration, severity should also be considered
- Literature reports up to a 75% success rate and improvement of vision following PPV

Jetrea (Ocriplasmin)
- Intravitreal injection of thrombolytic agent that causes lysis of vitreous
 - Pharmacologic vitrectomy
 - FDA-approved October 2012 for treatment of symptomatic vitreomacular adhesion
 - Two phase 3 trails
 - 26.5% of pts had resolution of VMA vs. 10.1% with placebo
 - Minimal adverse effects
 - Available January 2013
 - Cost?

Expansile Gas injection
- 15 eyes, 14 pts with symptomatic VMT injected intravitreally with 0.3ml perfluoropropane (C_3F_8), expansile gas
 - At 1 mos, traction release in 40% of pts (6/14)
 - At 6 mos, traction release in 60% (9/14)
 - Foveal contour restored in 47% of eyes
 - No gain in VA
 - Only 33% of pts had to have PPV
 - Horiz diameter < 750um, foveal thickness < 500 um, and low vitreous face reflectivity were very responsive (100%)

Epi-retinal Membrane
- AKA macular pucker, cellophane maculopathy
- Can be secondary to peripheral retinal disease, such as detachment or tear; a retinal vascular disease such as BRVO; inflammation; trauma or idiopathic
- Idiopathic tend to be more mild and non-progressive vs. those after retinal tear
Epi-retinal Membrane

- VA can range from 20/20 to 20/200 or worse
 - Studies show > 5% have worse than 20/200
- Often metamorphopsia is only complaint with idiopathic ERM
- Fewer than 20% of cases are bilateral
- Surgical removal is considered if severe vision loss or distortion

Epi-retinal Membrane

- Consider surgery if:
 - VA 20/40 or worse
 - Symptomatic
 - Visual need of patient
- 30 minute procedure
- Face down compliance after surgery for up to 2 weeks
- Make sure you have an experienced surgeon!!

Central Serous Retinopathy

- Common disorder of unknown etiology which typically affects men between age 20 and 45
 - Males to females 10:1
- Serous detachment of neurosensory retina due to leakage from small defect in RPE

Central Serous Retinopathy

- Pt typically presents with fairly recent onset of blurred VA in one eye with a scotoma, micropsia, or metamorphopsia
 - VA typically 20/30-20/70
 - Often correctable with low hyperopic RX
 - Unilateral in 70% of cases

Central Serous Retinopathy

- Appears as a shallow round or oval elevation of the sensory retina often outlined by a glistening reflex
- FA is helpful in providing definitive diagnosis
 - Classic Smoke stack appearance (occasionally)
 - Ink-blot appearance
- OCT shows marked elevation

Central Serous Retinopathy

- Risk factors
 - Type A personality
 - Stress
 - Use of systemic cortico-steroids
 - Pregnancy
Central Serous Retinopathy

- 80-90% of pts will undergo spontaneous resolution and return to normal (or near normal) VA within 1-6 mos.
 - >60% resolve back to 20/20
 - Rare to have vision remain < 20/40
- Approx 40% will get recurrence
- CNVM is VERY rare occurrence, but possible

Central Serous Retinopathy

- No known medical therapy has been proven effective
 - Topical steroids, NSAIDs etc
- Localized photocoagulation may be of some benefit, but only if
 - Duration at least 4 months
 - VA in other eye is reduced from other attacks
 - Recurrent CSR has already reduced VA in that eye
 - Pt is intolerant of vision and willing to take risk
- PDT suggested in some cases
 - Avastin?
 - Behavior modification?

RPE Tears

- RPE tears most common following PEDs, especially those treated with anti-Vegf therapy
- Also associated with PDT, postoperative hypotony after glaucoma surgery, trauma, PED associated with CSR, and CNVM from angioid streaks, POHS and myopic degeneration
- Poor prognosis with final acuity typically 20/200 or worse

RPE Tears

- Clinically appear as a well-demarcated area of bare choroid immediately adjacent to hyperpigmented area, representing redundant, retracted RPE
 - Often accompanied by heme or exudates
 - Pts typically report with sudden and severe loss of vision
 - Median time 4 weeks after injection

RPE Tears

- Fluorescein Angiography
 - Sharply demarcated area of hyperfluorescent window defect (area of absent RPE) with adjacent area of blocking hypofluorescence (redundant RPE)
 - Alternating light and dark bands of the RPE can sometime be seen, representing folded or pleated RPE

RPE Tears

- OCT
 - Critical feature is a focal disruption of RPE layer
 - With PED, RPE retracts and forms a dome like, tent like or pleated shape
 - The redundant RPE may appear irregular in contour with a thicker hypereflective reflex
 - Retina appears intact over the tear
RPE Tears: Treatment
- Recent study evaluated role of Lucentis in patients with RPE tear
 - 21 eyes, 20 pts with RPE tears
 - 9 eyes spontaneous, 12 secondary to treatment
 - Treated for average of 12 mos with average of 7 injections
 - VA improved in 6 pts (28.57%)
 - VA remained stable in 12 pts (57.14%)
 - VA decreased in 3 pts (14.28%)
- Pts without foveal involvement did better

Solar Maculopathy
- Damage to the outer layers retina as shown on OCT
 - Outer segment of photoreceptors and RPE
- Clinical exam, small yellowish lesion
- Acuity typically 20/40 20/60
 - Little to no correlation with appearance and acuity
- Greater risk in younger individuals who are more likely to start at sun or eclipse
 - With clear lenses
 - Also, schizophrenic pts, pts on LSD, etc.

High Myopia
- 67 yo presents for annual exam. Wonders if glasses need update
- States never had great vision OS
- OD: -9.25-2.75x080 20/30-2
- OS: -11.00-1.75x103 20/20-

Macular Schisis
- Relatively new entity, ≈1999 by Takano and Kishi
 - Prior to this, misinterpreted as shallow RD or even edema
- With OCT, thought to be not uncommon in highly myopic individuals with posterior staphyloma
- Characterized by intraretinal splitting, in both inner and outer retina, with cystoid spaces

Macular Schisis
- Fairly stable with time, with mild fluctuations in vision
- Treatment (vitreectomy) generally only recommended if vitreal traction, as may lead to macula hole
- Consider OCT in high myopes with central vision problems

OCT: Final Thoughts
- Has ushered in a whole new understanding of retinal disease
- Fast becoming the standard of care
- Many models /makes available

• THANK YOU!!