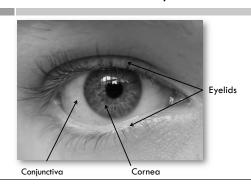
GP BASICS

Brooke Messer, O.D.

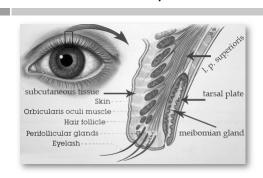
Cornea and Contact Lens Institute of MN

Disclosures

- □ Precilens
- □ Bausch and Lomb
- □ Alcon / Ciba Vision
- □ Essilor


Why are we here anyways?

- □ Fitting gas permeable lenses is an essential skill in fitting contact lenses
- ☐ There are always going to be patients that are not good candidates for soft contact lenses
 - **■**Eye Disease
 - ■Astigmatism and High Prescriptions
 - ■Those not eligible for LASIK


Why are we here anyways?

- □ What's a GP?
 - GP = Gas Permeable contact lens
- □ Very customized fitting lens
- □ Very healthy lenses to wear
- □ Provides the best quality optics!
 - \blacksquare More rigid than a soft lens
 - Tear film is our secret weapon!

Basic Ocular Anatomy

Basic Ocular Anatomy - Lids

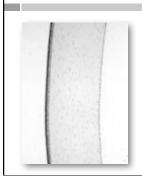
Basic Ocular Anatomy - Lids

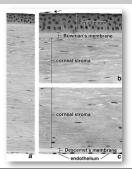
- □ How do the eyelids affect CL fitting?
 □Lid Tonicity of upper and lower lids
 □Lid Positioning
 - ■Lens Movement
 ■Lens Positioning

Basic Ocular Anatomy - Conjunctiva

Bulbar and Palpebral

- Structure opaque
- Produce mucin needed for tear quality
- Limbus produces corneal epithelial cells


Can the conjunctiva affect a contact lens fitting?

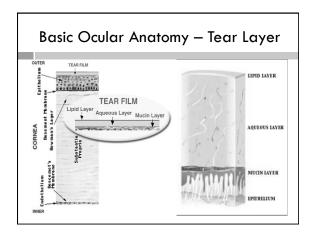

Basic Ocular Anatomy - Cornea

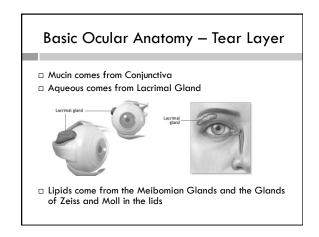
- 5 layers
 - Epithelium
 - Bowman's layer
 - Stroma
 - Descemet's Membrane
 - Endothlium

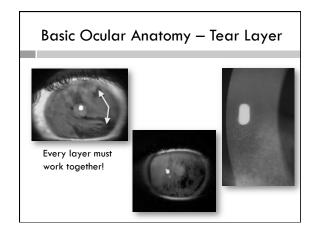
Basic Ocular Anatomy - Cornea

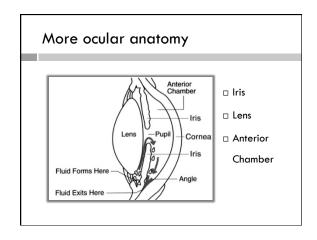
Basic Ocular Anatomy - Cornea

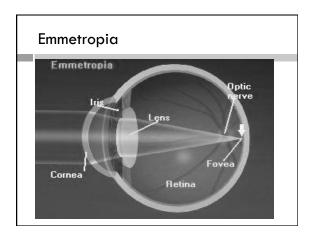
- \blacksquare Main Function = Refractive
- Bends the light as it enters the eye to help focus it
 - Must stay thin and clear!
- Anything that affects the clarity of the cornea or the shape of the cornea can adversely affect the vision

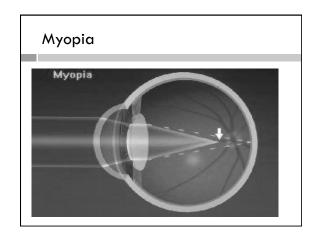


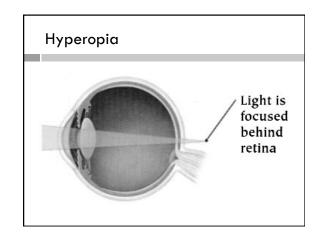


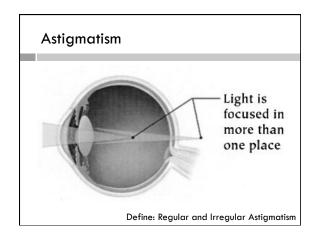

Basic Ocular Anatomy – Tear Layer

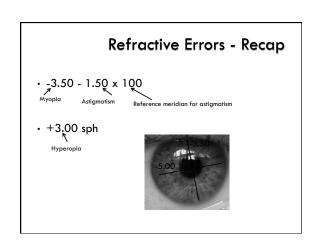

- □ The Tear Layer
 - \blacksquare Vital to ocular health
 - Complex fluid layer
 - Contains aqueous (water)
 - Lipids (oil)
 - Mucin
 - Enzymes
 - Natural antibiotics

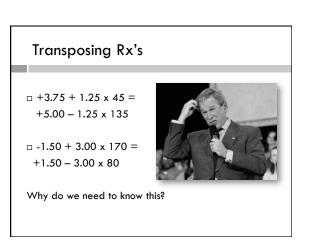


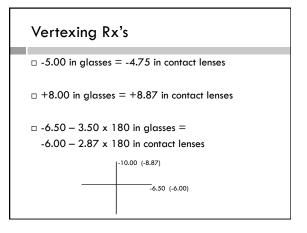


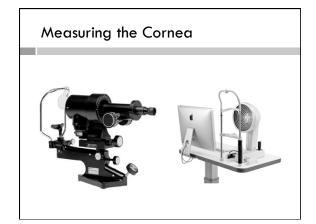




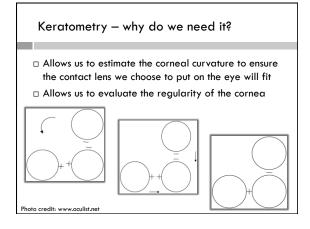


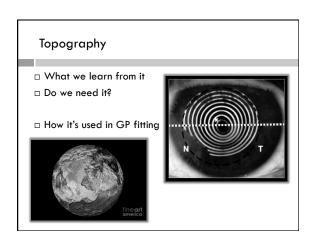







Transposing Rx's -7.50 + 1.75 x 20 Add the Cyl number to the sphere number Flip the +/- symbol The cylinder amount stays the same The axis number shifts by 90 degrees -5.75 - 1.75 X 110




VERTEX DISTANCE CONVERSION TABLE □ Any value over +4.00 or -4.00 needs to be adjusted, including cylinder values □ yillinder values □ Why do we do this? □ Why do we do this?

What information do we gain?

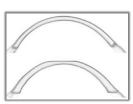
- □ Topography
 - The 'lay of the land'
 - Evaluate curvatures are they limbus to limbus or just central?
- □ Keratometry
 - Central curvature readings
- □ Readings can be expressed in millimeters or diopters

Corneal Curvature

- □ Learning about corneal curvature
 - Diopters- higher is STEEP CORNEAS, lower is FLAT
 - 40.00 D is FLAT
 - 47.00 D is STEEP
 - KCN can have diopter readings into the 100s!
 - Millimeters- opposite of Diopters
 - High mm is flat (8.5mm)
 - Small mm is steep (6.0mm)

Converting diopters to mm

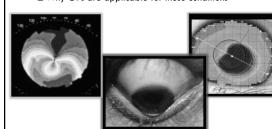
 \Box Formula for converting 337.5 / X

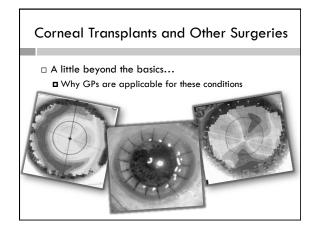

Example: 45.00 D cornea 337.5 / 45.00 = 7.5 mm

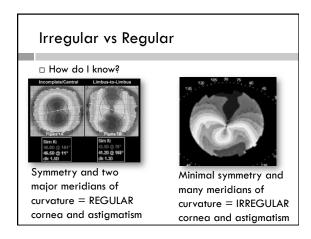
Example: 7.5 mm cornea 337.5 / 7.5 = 45.00 D

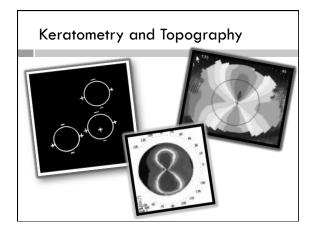
Above and beyond

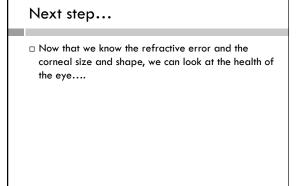
- □ A little beyond the basics...
 - □ Corneal shape descriptions
 - **□**Prolate
 - **□**Oblate
 - **■**Eccentricity

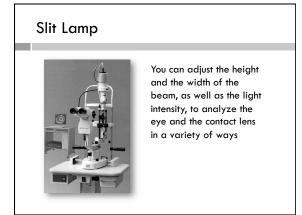


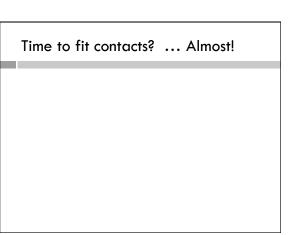

Above and beyond


- ☐ A little beyond the basics... Irregular Corneas ☐ When corneas are not regular!
 - Keratoconus
 - Pellucid Marginal Degeneration
 - **□** Corneal Transplants
 - Other post-surgical corneas


Keratoconus and Pellucid


- $\hfill \square$ A little beyond the basics...
 - Why GPs are applicable for these conditions





Clinical Work-up for Contact Lenses

- ☐ The main purposes of doing an extensive examination prior to fitting contact lenses are to:
 - □ consult with the patient as to the suitability, risks, limitations and expectations with contact lens wear.
 - determine the ocular health and suitability of contact
 - obtain baseline data for future reference
 - determine the best type of contact lens to fit and the parameter of the first diagnostic lens

Case History

- □ General health history
- Ocular health history
- Occupation, hobbies, recreational activities and visual demands
- □ Contact lens history
- □ Patient expectations

General health history

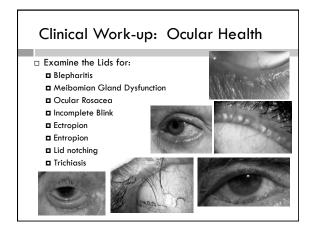
- □ Allergies?
- Allergies can make contact lens wear uncomfortable
- Taking antihistamines can dry eyes
- □ Diabetes?
 - An corneal abrasion may not heal rapidly with an insulin dependent diabetic
 - Decreases sensitivity means less awareness of problems
 - Decreased ocular health in general means CL fit must be optimal
- □ Cardiovascular disease?
 - Diuretics (HTN) can cause decreased tearing and photophobia
- Beta-adrenergic blocking agents (atenolol, metoprolol, etc...) can cause dry eye.

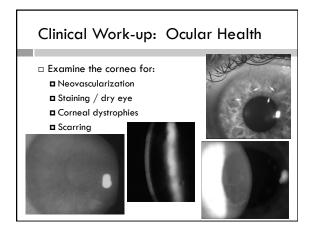
 □ Sjogrens' syndrome, Lupus, or other autoimmune disease?
- ☐ Can lead to very dry eyes
- □ Other Prescription or OTC medications?
 - □ Oral contraceptives-in some cases causes dryness
 - Meds for anxiety or mental health disorders can cause dry eye symptoms and reduced blinking.
 - Accutane for acne can cause severe dry eye and blepharoconjunctivitis

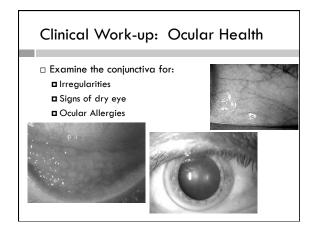
Ocular health history

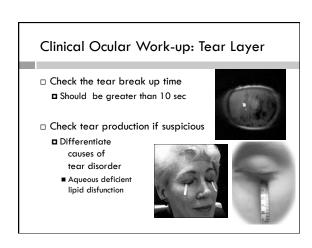
- □ Ocular allergies ?
- □ Previous ocular injuries or surgeries
- □ Does the patient have any dry eye symptoms?
- □ Ask if they have or have had any other infections or diseases
 - Herpes Simplex for example
- Do they use eye drops regularly and if so, what kind?
 - OTC or RX

Occupation, hobbies, recreational activities and visual demands


- □ Find out if there are specific uses the patient has in mind Sports
 - Evenings and weekends
 - Sometimes these patients can be easier to work with since they will use the lenses only on occasion
- $\hfill\Box$ Find out if there are specific negatives
 - □ Do they work around chemicals or fumes that may make lens wear less desirable?
 - Do they want to use lenses for extended shifts?
 - Do they work on a computer 8 hours a day?
 - Are their task related visual demands unrealistic?

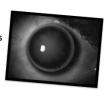

Clinical Work-up: Ocular Health





Time to fit contacts? ...Yes!

Fitting Techniques □ Empirically □ Benefits: Great for busy practices, does not require a lot of complex number grinding □ Downfalls: Do not get to see lenses on eye before committing to an order, little control over specifics □ Fitting sets □ Ideal for those who really want to specialize □ Get a better idea of potential outcome in office before order is placed


What do I need?

- □ Slit lamp or Burton Lamp
- □ Sodium Fluorescein Strips
- □ Cobalt blue filter
- □ Eyeball
- □ Recommended: Wratton Filter

Types of GP Lenses

- Corneal gas permeable lenses
- Which patients?
- Benefits
- Limitations
- □ Intralimbal gas permeable lenses
 - Which patients?
 - Benefits
 - Limitations

Types of GP Lenses

- □ Corneo-Scleral lenses
 - Which Patients?
 - **□** Benefits
 - Limitations
 - Many designs
- □ Scleral lenses
- Which patients?
- Benefits
- Limitations
- Many designs

KEY: Classification of large diameter lenses is based on FIT, not DIAMETER

Choosing a lens type

- □ Lifestyle of patient Active and on-the-go?
- □ Patient dexterity trouble handling lenses?
- □ Palpebral fissure problems getting lens in eye?
- $\hfill\Box$ Corneal / pupil size optimize optics and fit of lens
- □ Topography evaluate irregularity, astigmatism

Choosing your first lens

- $\hfill\Box$ Use topography and \hfill or keratometry readings
 - Typically need a lens that is slightly flatter than average corneal reading
 - \blacksquare ~9.2 to 10.0 OAD is a good starting point, using HVID as a quide
 - Big corneal diameter choose a bigger lens OAD
- □ Example: K's or Topo reads:
 - **42.00** x 43.50 (average = 42.75)
 - Choose a BC of your lens slightly flatter than average, like 42.25

Ultimately....

 $\hfill \hfill \hfill$

Lens Design Basics

- □ Every lens has
 - **■** Base Curve
 - Goal is to align with the cornea
 - Optic Zone
 - Where the optics are clearest!
 - Curvature of Optic Zone is base curve
 - Peripheral curve system
 - \blacksquare Most of the time there are 2 curves, sometimes more
 - Goal is to align with the peripheral cornea and assist in centration and tear exchange

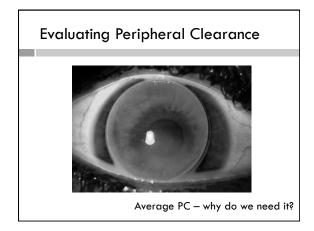
Lens Design Basics

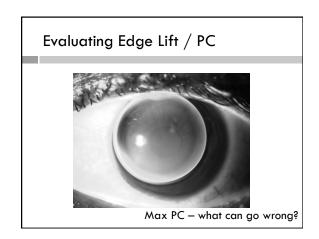
- □ Other lens specifications
 - dK
 - Oxygen transmisibility
 - Doesn't affect the fit, but the higher dK makes lenses more 'bendable' and less ridgid
 - Higher dK is usually less wettable
 - Center thickness
 - \blacksquare Sometimes lenses flex on the eye with the weight of the lids
 - Increasing the center thickness can counteract that
 - Decreasing center thickness improves oxygen transmisibility

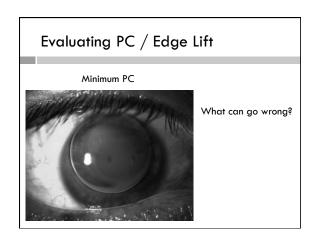
Let's Fit some lenses!!

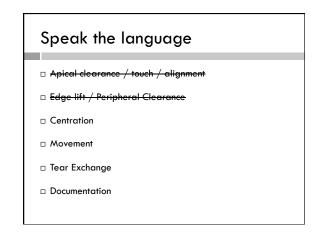
Speak the language

- $\ \square$ Apical clearance / touch / alignment
- $\hfill \Box$ Edge lift / Peripheral clearance
- □ Centration
- □ Movement
- □ Tear Exchange
- □ Documentation

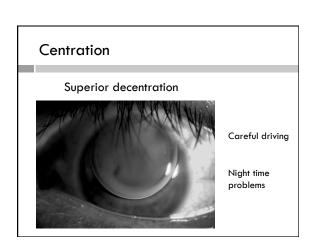

Apical Relationship


- $\hfill\Box$ Apical touch \hfill bearing \hfill - epithelial compromise
- □ Apical Alignment healthy!
- $\hfill\Box$ Apical Clearance – Often a tight, decentered fit



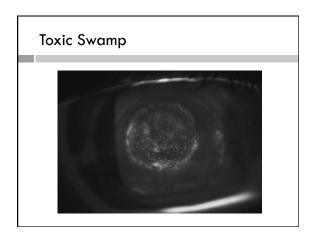

Speak the language

- □ Apical clearance / touch / alignment
- □ Edge lift / Peripheral Clearance
- □ Centration
- □ Movement
- □ Tear Exchange
- □ Documentation



Blink - ouch... blink - ouch... blink - ouch Best practice

builder! \$\$\$


Inferior decentration

Speak the language Apical clearance / touch / alignment Edge lift Centration Movement Tear Exchange Documentation

Movement □ Should be a high – low movement with blink □ Lens should move 1 mm or more □ Depends on eye health and tear exchange □ Aids in tear exchange □ Edge lift contributes □ Watch your optic zones compared to pupil location

Speak the language Apical clearance / touch / alignment Edge lift Centration Movement Tear Exchange Documentation

Tear Exchange | Functions to provide nutrients and remove waste | Keeps underlying cornea healthy | Good movement usually correlates with good tear exchange | Lens must have some edge lift to allow for exchange

Speak the language

- Apical clearance and apical bearing
- □ Edge lift
- □ Centration
- □ Movement
- □ Tear Exchange
- □ Documentation

Chicken Scratch

- □ Describe what you see!
- Apical Relationship
- **■** Lens Centration
- Peripheral Clearance
- Lens Movement
- Tear Exchange
- lacktriangle AA / Center / Avg PC / Hi-low / +TX
- □ Or just draw it!

What's next?

- After choosing a well fitting diagnostic lens, check the lens power by performing an over-refraction
- Add the lens power to your over-refraction and voilal
- ☐ Order the lens parameters on the eye with the desired power

Making basic changes

- □ Changes to the base curve
 - Better align to the central cornea
- $\hfill\Box$ Changes to the peripheral system
 - Assist in lens centration and tear exchange
- □ Changes to lens size
 - Improve centration
- $\hfill\Box$ Changes to optic zone size
 - Decrease glare and haloes
- ☐ ALL CAN BE DONE INDEPENDANTLY OF EACHOTHER IN GAS PERMS!!!

SAM - FAP Rule

- □ Steeper add Minus Flatter add Plus
 - When changing the base curve to better align with the cornea, the power changes too.
 - Change the lens power equal to the amount you changed the lens BC (in diopters)
 - Example: 44.00 D lens, power is -2.00
 - Lens fits too flat, you'd like to order a 45.00 (SAM)
 - Order a 45.00 D lens with a power of -3.00

In the beginning...

- $\hfill\Box$ Changes to other lens parameters
 - Get to know your consultants, they are an awesome resource!
 - □ Draw / video / snap shot your fittings and send them to your consultant to talk through them
 - Listen to your patients!

In closing Yes, GPs are complex But, TOTALLY worth learning! They allow you to provide an extra level of care for your patient BFF's for life! Practice!!

Thank You Brooke Messer, O.D. drbmesser@gmail.com