

GENERAL FITTING PRINCIPLES

- Avoid mechanical pressure on the cornea
- Spread bearing area to periphery
- Avoid Limbal irritation and inflammation
- Avoid endothelial cell stress by removing oxygen barrier to endothelium
 - Long term wear of any low Dk lens contributes to polymegathism and pleomorphism.

INITIAL LENS SELECTION

- Typically your choice of a lens design is based upon
 - Unique characteristics of a specific design and the disease you are working with
 - Keratoconus
 - Post penetrating keratoplasty
 - Post refractive
 - Ocular Surface disease
 - Endothelial Cell health

TODAY'S OPTIONS

- Gas Permeable Lenses
- Soft Lense
- Hybrid Lens
- Scleral Len

Ouestion to ask yourself: Do I have enough sagittal depth? Where do I need to make changes?

central intermediate peripheral

SAGITTAL DEPTH

- Sag depth = {R-sqrt(R²-(1-SF)xC²)}/(1-SF)
- SF= shape factor
- (Peripheral curves)
- C=visible iris diamter/2

(Lens diameter)

CHANGING SAGITTAL DEPTH • Decrease Flatten/ shorten peripheral curves Steepen/ lengthen peripheral curves Peripheral Peripheral Increase diameter of lens or optic zone Decrease diameter of lens or optic zone

FACTORS WHICH AFFECT SAGITTAL DEPTH

- Corneal Diameter
- Corneal Geometry
- Limbal Geometry

PERIPHERAL LENS DESIGN

Periphery
 Edge

BITANGENTIAL DESIGN

18.2mm

WHAT DETERMINE THE RIGHT AMOUNT OF SAGITTAL DEPTH?

- Vision?
- Oxygen?
- Physiological Response?
- Disease State?

SO HOW DO YOU DESIGN A LENS?

IOME	NCLATU	KF		
minology				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Alternative Names	Diameter	Bearing	Tear Reservoir
Corneal		8.0 to 12.5 mm	All lens bearing on the comea	No tear reservoir
Corneo- scleral	Corneal-Limbal Semi-scleral Limbal	12.5to 15.0 mm	Lenses share bearing on the cornea and the sclera	Limited tear reservoir capacity
		15.0 to 25.0 mm		
(Full) Scleral	Haptic	Mini-scletal 150 to 18.0 mm	All lens bearing is on the sclera	Somewhat limited tea reservoir capacity
		Large-scleral 18.0 to 25.0 mm		Almost unlimited tear reservoir capacity

WHERE TO BEGIN??

- Start with corneal diameter and general eye shape
- If cornea is prolate in shape (steeper centrally) use the prolate design
- If cornea is oblate in shape (flatter centrally) use oblate design

<text>

HOW DOES THIS AFFECT POWER? By adding a reverse curve Flatter base curve = less minus A 60 00 comea could have a 45 00 BC A 60 00 comea could have a 45 00 BC Therefore a - 20 00 eye could wear a - 5 00 lens Therefore a - 20 00 eye could wear a - 5 00 lens This affects lens thickness and oxygen transmission Conversely, you may not want a flatter BC on a high hyperope.

SHADOWING OF THE LENS EDGE

- Easy way to assess the edges for excessive li
- Position slit beam across lens and view the far lens edge

PERIPHERAL LENS DESIGN

• Do you need a custom periphery?

THE PENETRATING KERATOPLASTY

SPECIFIC INDICATIONS

- Keratoconus
- Aphakic corneal edema
 Psuedophakic corneal edema
 Failed graft
 Fuch's corneal dystrophy
 Herpes Simplex Keratopathy
 Inflammation

- Trauma
- Stromal dystrophies

PKP OBJECTIVES

- 1. Establish a clear central cornea/Visual axis
- 2. Minimize refractive error
- 4. Alleviate pain
- 5. Eliminate infection

ASTIGMATISM: **OPERATIVE FACTORS TO CONSIDER**

- 1) Donor cornea

- Tissue mal-apposition
- 7) Suturing

ASTIGMATISM: POST- OP MANAGEMENT

- Intraoperative prevention
- Corneal topography
- Suture adjustment and/or removal
- Corneal Relaxing Incisions (CRIs or LRIs)
- Compression sutures
- Laser refractive surgery (ie. LASIK, PARK)
- Wedge resection
- Wound revision

CONTACT LENS DESIGN

- Corneal Gas Permeable
 - Front tor
 - Back tori
 - Bitoric
 - Spherica
 - Diameter modification
 - Optic zone modification
 - Rotationally assymetric
 - Reverse geometry

SOFT LENSES

INDENTIFYING CORNEAL GRAFTS TOPOGRAPHICALLY

- The proud graft
 The tilted graft
 The high cylinder graft

THE PERFECT GRAFT

- These are not the eyes that will be sent to you to be fit
 Every surgeon has different definition of "perfect"
 Usually VA 20/40 or better

THE PLATEAU GRAFT

THE PLATEAU GRAFT

THE PLATEAU GRAFT

- Surgical correction
 - Need to keep chamber formed

 - Remove running suture

THE PLATEAU GRAFT

- Contact Lens Correction
 - Standard design RGP would vault and trap excess tears and bubbles beneath the lens
 - Fit very small (within the graft)
 - Fit very large (reverse geometry)

THE PLATEAU GRAFT

- Good Plateau
 fit may need
 extreme curves
- Graft host junction may be site for lens adherence

30.00BC with 8D reverse curve

THE PLATEAU GRAFT

- Large OAD
- Oblate design with large optic zone
- vault running suture
- Fit PC's separately

THE PROUD GRAFT

THE PROUD GRAFT

THE PROUD GRAFT

- Surgical Correction

 - PRK for aniosmetropia
 - Cannot cut flap
 - Epikeratophakia

Longer

THE PROUD GRAFT

 Treat like a cone, but may need large optic zone (instead of making OZ smaller)

THE TILTED GRAFT

THE TILTED GRAFT

- Usually seen in KCN/ PMD
 Tough to remove entire cone
- Trephine dependent
 - Use vacuum trephine to avoid undercutting
- Wound dehiscence
- Tissue mal-apposition
- Improper suture placement
- Unequal suture tension

THE TILTED GRAFT

- Surgical Methods to Correct
 - Pulling sutures
 - Placing sutures
 - Wedge resection
 - Wound revision

GRAFT TILT

- Large lenses
 - Beware old grafts with poor endo function
- Small lenses
- Keratoconus designs
- Increasing or decreasing optic zone
- Assymetrical lenses

HIGH CYLINDER GRAFT

Causes
 Elliptical opening
 External compression
 Cardinal suture placement/tension

HIGH CYLINDER GRAFT

- Surgical Correction
- Selective suture removily
- Resulture
- Corneal relaxing incision
 With or with out compression
- Refractive procedures
- Wedge resection
- Repeat PKP
- Refractive implant

HIGH CYLINDER GRAFT

- Contact Lens Options
 - Spherical lenses
 - Bitoric/ Back tori
 - Large diameter lense

INSIDE CYLINDER

- Periphery fairly spherical
- Spherical lens works well
- May be a proud cornea

FITTING PHILOSOPHIES

FITTING PHILOSOPHIES

Reverse geometry

- Steeper secondary curve position lens centrally and allows the base curve to vault, rather than touch, the cone.

REVERSE GEOMETRY DESIGN

TOO MUCH SAGITTAL DEPTH

- Central bubbles under the lens

WHAT SHOULD YOU CONSIDER IN LENS DESIGN?

- Ease of fitting
- Simple fitting guide
- Minimal fitting time • High first fit success
- Minimal corneal insult
- Increased patient comfort
- Repeatable replacements

WHY DO YOU NEED MORE THAN ONE LENS DESIGN?

NIPPLE CONE

OVAL CONE

- Displaced apical center
 Inferior quadrant
 Cone diameter > 5-6 mm

OVAL OR DISPLACED CONES

- Large diameter
- Larger optic zones
- Reverse Geometry

PELLUCID MARGINAL DEGENERATION

- "Kissing doves"
- Thinning 1-2mm from limbus

GLOBUS CONE

- LargestInvolves 75 90% of the cornea

FITTING A LENS

Animation courtesy of Lens Dynamics

FOR SMALL CENTRAL CONES

- Standard cone designs work well
- The steeper the cone the smaller the optic zor
 - Generally smaller lens
 - However, diameter does not have to dictate optic zone.

Animation courtesy of Lens Dynamics

BEST OPTIONS FOR INFERIOR CONES

- Small and Flat (low sag)
- Will ride high
- May have inferior lift of
- Large Diameter
 - Forced centration
 - Covers pupil better, less flarePeripheral geometry of concern
 - More lower lid interaction
- Reverse Geometry

LID LOCATION Post

Post ptosis surgery

CHOOSING A BASE CURVE

3-4	mm	Rule

- Yellow Rule
- Reference Sphere
- .2mm Flatter than Average
- Fit steep K

REFERENCE SPHERE/ BFS

55.00D or 6.10mm

WHAT WORKS?

- Depends on type of cone
- Depends of type of lens
- Use the fitting set recommendation
- Remind patient that you are putting the first lens on the eye to get <u>yourself</u> orientated.
 - The patient won't be able to see and the lens will likely be uncomfortable.

BASE CURVE SHOULD BE EVALUATED WITH THE LENS RIDING OVER THE CONE

FLAT LENSES (LOW SAG) RIDE HIGH, STEEP LENSES (HIGH SAG) RIDE LOW

6.25mm BC

5.7mm BC

POOLING AT BASE OF CONE

- High SagFlatten Base Curve
- Decrease Diameter or Optic Zone
- Flattening the peripheral curves

BUBBLES UNDER THE LENS

- Low sag
 - steepen base curve
 - Steepen PC
 - Increase OZ or diameter

EDGE LIFT Most important factor for a comfortable fit. Ideal Edge Lift =

fluorescein band width 0.6 mm to 0.8 mm wide

DON'T TRY TO ADJUST PERIPHERAL CURVES BY CHANGING THE BASE CURVE

I Kone 50.00 9.6

PERIPHERAL CURVE ADJUSTMENT -

Flat PC's

Naturalens 8.0 10.3 STD PC's

ADHERENCE

- Make peripheral curves flatter and wider
- Flatten BC
- Reduce the optic zone

Rotationally Assymetric Lenses

Zone 2 has a different radius than Zone 1 Zones 3 and 4 are transition zones for 1&2

EINS LOCATION Riding High Reduce diameter Steepen base curve Reduce edge lift Low Riding Increase diameter Flatten base curve Increase edge lift

FITTING A LENS

- Total Diamete
- Base Curve
- Peripheral Curv
- Power

POWER

- Over scope
- Refine in +/- 0.50 & +/- 0.25 steps
- Final lens power = trial lens + over retrac
- vertex > 4.0 D over

PEARLS

- Finish refraction with lights on.
- Reassure patient if VA is not optimum at initial fitting.(tearing)
- VA often improves over first few weeks wear.
- Educate patient about VA expectations. (night driving)

- A lens which slides or is tipped or tilted on the cornea can induce significant amounts of unwanted cylinder
- A tilted lens can cause distorted and fluctuating vision

OVER SPECTACLES

 The steeper secondary curve such as a reverse geometry lens, can help prevent lens tilt by centering the lens horizontally and vertically.

CORRECTION OF RESIDUAL ASTIGMATISM

Over Spectacles

- Front Surface Tor
- Peripheral Toric
- Large Diameter
- Reverse Geom

33

FRONT SURFACE TORIC

- Increase diameter 0.3 mm
- Incorporate prism ballast
- Truncation if required

SUMMARY

- Determine location of cone
- Elevation maps helpfulLens will center over "high" area
- Choose design and diameter of long based on cone to
- Large lens force centration
 - Small lenses for central con

SUMMARY

Patients with PMD require large diameter, or even scleral, GP lenses.

SUMMARY

- Select base curve based on the fitting algorithm of your choice
- Place lens on eye and determine sagittal depth
 - Flat lenses ride high
 - Steep lenses ride low
- Only evaluate overall sagittal depth with the lens centered on the cone

- Widen/ flatten
- PC's
- Narrow/ steep PC's

SUMMARY Diameter/OZ Optimize centration Minimize lid interaction Increase diameter: increase sag Decrease diameter: decrease sag

SUMMARY

SUMMARY

- - Effects comfort
 Determine the appropriate PC's after the diameter and base curve have been selected

MOST IMPORTANTLY

- Don't make too many changes all at once
 - Large fitting sets are helpful
 - Practice altering once parameter at a time to learn how each change impacts the overall
 - Remember, these are general principles and each lens will have its own specific nuances.

