Basic Optics of Near Low Vision Devices

Rebecca Kammer, OD, FAAO, Diplomate Low Vision
Assistant Director Optometric Education
Associate Professor
Western University College of Optometry
rkammer@westernu.edu

Examination sequence
- Case Hx
- VA’s distance, near, continuous text
- Low Contrast acuity (Bailey-Lovie)
- Refraction
- Central field test (scotomas)
- Magnification response

Sequencing of optical prescribing
- Magnification response (high add or cctv)
- Does the patient require EV training?
 - Steady PRL?
- IF yes, Explain need for EV training
- Explore response to magnification on a couple devices to demonstrate concept and no magic glasses

WAIT
- Don’t prescribe devices at this point in time
- Determine most successful strategy to incorporate devices at a later stage when EV training makes progress
- Discussion

Determining Necessary Magnification for Near
- Magnification Needed
- Convert to De (M times 2.5 D)
- Consider near treatment options
- ALL THEORETICAL

Categories of Optical Aids at Near
- Spectacle plane lenses (microscopes, high adds, SV near)
- Hand held magnifiers (2 ways to use)
- Stand magnifiers
- CCTV/Video Magnifiers
- Telemicroscope (near telescope)
Example

- Mrs. Smith wants to be able to read a book. Her best corrected visual acuity is 10/80.

 \[160/40 = 4 \times 2.50 \text{D} = +10.00 \text{D} \]

 Reading distance?

Equivalent Power

- power of add predicted
- any lens or combination of lenses used to produce the power of add predicted
- whole optical system can be replaced by a single lens positioned such that the object is located at its primary focal point

Equivalent Power

\[D_e = D_1 + D_2 - tD_1D_2 \]

where

- \(D_e \) = equivalent power
- \(D_1 \) = power of lens in LV aid
- \(D_2 \) = add or accommodation
- \(t \) = separation between LVA and spectacle plane

Microscopes/High Adds

- Lens at spectacle plane
- Object at focal length of lens: working distance = object distance
- Image at infinity; one magnification created \(M_{RD} \)
- \(D_e = D_1 + D_2 - tD_1D_2 \)
- \(D_e = D_1 \) (because \(D_2 = 0 \))

Microscopes/High adds

- 90 yof with BVA 10/200 wants to read great-granddaughters letters (RS80). She is a 4.00D myope.
- ROV?
- Add?
- \(M_{RD} \)?
- Final prescription of reading glasses?
Another example

- 74 yof, BVA 10/120 with +1.00DS, wants to read 0.8M print and have her hands free.
- Single vision near glasses RX?
- Rated Mag = 16/4 = 4x (what magnifier is usually marked with from manufacturer)

HAND/STAND MAGNIFIERS

Virtual Image Magnified Print, RO Magnifier Reading add

Distance = focal pt of add

Hand Magnifier: Object at focal point of lens (no add, fully corrected)

Real object at focal point
Hand magnifier
Image at infinity

print = at focal point

Eye

Easiest way to use Hand magnifiers

- Hold reading material at focal point of lens (1/D)
 - De = D_{add}
 - image at infinity
 - magnification equation simplifies to M_{RD}
 - i.e. magnification is constant for any distance of the magnifier to eye - WOW!
 - Field of view changes with distance. How?

Example

- 82 yom wants to read the newspaper. His BVA is 10/80
2nd way to use Hand Magnifiers

- Object is held inside the focal length of the lens
- Image is then virtual and at a finite distance from the lens
- Image is enlarged (lateral magnification is induced)
- User must use add (or use accommodation or is myopic) to see finite image clearly
- Image must be located at the focal length of the add to be seen clearly

\[\frac{1}{D_e} = \frac{1}{D_{HM}} + \frac{1}{D_{add}} - tD_1D_2 \]

\[D_1 = D_{HM} ; \ D_2 = D_{add} \]

\[\text{Starts to get ugly} \]

\[\text{Still ugly but slightly easier} \]

Clinical Rule

- One add’s worth of power is lost from the maximum combined power for every focal distance of the magnifier that it is held away from the spectacle plane

Stand Magnifiers

- Same optics as case 2 with hand magnifiers
- Manufactured so that objects are inside the focal length of the lens (height of stand is object distance)
- Must use an add or accommodation
Stand or hand magnifiers

\[\frac{1}{D_{\text{add}}} \]

\[\text{amount of add or accommodation required depends upon the position of the virtual image} \]

Stand Magnifiers

\[X' \]

\[\text{image created by the stand magnifier is at the focal point of the add/accommodation used} \]
\[\text{the distance of the virtual image behind the lens will also determine the maximum add that can be used} \]

So how do I prescribe a stand magnifier?

\[\text{calculate ROV and necessary add} \]
\[\text{this is the equivalent power you need} \]
\[\text{do a lot of measurements and calculations} \]
\[\text{or} \]
\[\text{look at the prepared charts!} \]
\[\text{Rule of thumb:} \]

Telescopes Adapted For Near Viewing

Two Methods:

- Reading Cap: Plus lens over objective
- Extending the length of the telescope

Reading Cap

\[M_{\text{cap}} = D_{\text{cap}}/2.5 \ D \quad (40 \text{ cm reference}) \]
\[D_{e}=D_{\text{cap}}*M_{\text{ts}} \]

- **Advantage:** Longer working distance than high add of same dioptic power
- **Disadvantage:** Smaller FOV than high add
Consider Prescribing Over the Implantable Telescope

Extended length for near
- Extra length in telescope often called optical tube length
- Hard to calculate actual magnification created
- Spiral telescope has ability to be lengthened for near viewing at about 25-30 cm depending on telescope

CCTV
- Electronic Magnification
 \[D_e = M_{screen} \times D_{add} \]
 Where \(D_{add} = 1/\text{distance of pt from screen} \)
- \(M_{screen} = \text{actual letter height (mm)/magnified letter height} \)
Prescribing for Near Viewing

Test for best add
- Equivalent Power

Microscopes or High Adds
- Aspheric monocural or single lens design
- Doublet – monocural
- Prism glasses
 - Full frame
 - Half eye

Microscopes and High Adds: Terms
- Working distance = distance from spec plane to reading material
- Full diameter = lens fills frame or usable lens space

Microscopes/ Doublets
- +8.00 D to +48.00D
- Special doublets above +12D can improve optical performance
 - Clear Image = Great quality
- No mobility with full diameter design

Binocularity
- Binocularity practical to +12.00D according to textbooks
- Clinically practical upper limit – some docs think +8 is max
- BI prism to aid in convergence
- Good for sustained near tasks
Binocularity

- Prentice Rule
 \[P = dD \]
 \[\text{prism} = d \, \text{(cm)} \times \text{Power of lens} \]

 Clinical Rule:
 Amount of BI in each lens
 = add power +2

Finding the Near PD

(For rx’s<+9D)

- Several ways exist
- Ian Bailey recommends: decentering the lens 1.5mm for each diopter of add. If the distance PD is > than 65mm, decenter 1mm further.

Example

- Patient with distance PD of 62mm requires the use of a +6.00 D monocular add to read a textbook. What is the patient’s near PD:

 \[6(1.5) = 9 \text{mm} \]

 \[62 - 9 = 53 \text{ mm} \]

 So near PD should be set at 53mm

Example

- Answer: \[6(1.5) = 9 \text{mm} \]

 \[62 - 9 = 53 \text{ mm} \]

 So near PD should be set at 53mm

example

This method only determines the NPD. To create BI prism, more decenteration would be necessary or prism can be ground in.

Prescribing On Center

- If prescribing monocular above +8 consider prescribing On-Center (at distance pd)
- Teach patient to view straight ahead
- Must move paper to read – not head!
Custom Microscopes and High Adds

- Prism Spectacles: Full Field or half eyes (+8 practical maximum)
- High plus aspheric (monocular)
- Microscopes (monocular) (typically over +8D)
 - Aspheric doublet (Clear Image)
 - Marked at Rated Mag (4D X Mag printed on side)

Microscopes and High Adds

Types of Delivery

- Regular bifocals from local lab
 - (FT28 or FT35) can get to +8.00D add in CR39
 - (FT28 or FT35) can get to +4.00D add in POLY (correction on handout)
 - Round seg can get to +40D
 - Executive to +20D

Types of Delivery – low vision custom companies

- Multifocals (2X to 10X)
 - Frame should have adjustable nosepads
 - Segment should be set higher than a conventional bifocal (as high as lower pupil margin)
 - A monocular bifocal should never be decentered

Other Considerations

- What if patient doesn’t respond to the theoretical ideal magnification?
- Have you considered the scotoma?
- Have you considered contrast sensitivity?
- Have you considered cognitive deficits
- Prior to ever introducing magnification, I like to try to predict how they will respond

Summary

- Know the general optics of your devices
- Know the optics of the eye – refraction
- Combine knowledge with clinical relevance and practicality
- = Confidence in prescribing
- Don’t forget complexities of scotomas and consider entire rehabilitation plan