The Future of Cornea And Contact Lens

Christine Sindt, OD, FAAO, FSLS

I have the following financial relationship to disclose:
- Alcon - Consulting Fee
- Allergan - Consulting Fee
- NovaBay - Consulting Fee
- Shire - Consulting Fee
- Valeant - Consulting Fee
- EyePrint Prosthetics - President

This course material was developed independently of any assistance.

Two steps to get CE credit for this course:

1. Complete the course evaluation on the back of your course ticket.
2. Hand in your course ticket at the conclusion of the course.

If you leave the course for more than ten minutes you will not receive credit.

No cameras or recording devices are allowed during the course presentation.

Keratoconus: management

- Eyeglasses
- Contact lenses
- Penetrating keratoplasty
- Thermokeratoplasty
- Excimer laser photorefractive keratectomy
- Laser In-Situ Keratomileusis
- Lamellar keratoplasty
- Epikeratophakia
- INTACS
- Collagen Crosslinking

Procedures which weaken the cornea

Procedures that reinforce the cornea

Collagen Crosslinking (CXL)

California Optometric Association
OptoWest 2017
three locations • six hours of CE

OPTOWEST SAN FRANCISCO
February 12, 2017

OPTOWEST SACRAMENTO
March 19, 2017

OPTOWEST SAN FRANCISCO
April 30, 2017
C3-R®
- Verisyse® phakic IOL

“It was incredible, in a matter of 10 minutes I went from 20/250 to 20/20”
- On Brian Williams Nightly News

Steve Holcomb- Gold Medalist
US Olympic Bobsled Team 2010

Natural Corneal Stiffening
- Normal aging increases crosslinking
 - Infant cornea relatively flexible compared to adult
 - May account for slowing of progression in KCN with age
- Cross-linking is enhanced by increased glycation of corneal collagen
 - Hypothesis why we don’t see many diabetics with KCN.

Collagen Crosslinking
- Goal to halt KC progression and reduce need for PK

Things that Crosslink
- Aldehydes
- Chemical Fixatives
- Photosensitizing radiation
 - In vivo studies showed UV radiation and riboflavin to be the most effective and least harmful to the human cornea

CXL Procedure

<table>
<thead>
<tr>
<th>Conventional</th>
<th>Accelerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pachymetry > 400µm</td>
<td>Increased illumination</td>
</tr>
<tr>
<td>Debride cornea 7 to 8 mm</td>
<td>Biochemically equivalent</td>
</tr>
<tr>
<td>0.1% Riboflavin in dextran applied topically</td>
<td>Similar safety profile</td>
</tr>
<tr>
<td>1gt every 2 min for 30 min</td>
<td></td>
</tr>
</tbody>
</table>
Different Collagen Crosslinking Devices

- Avedro – USA
 - Newly FDA approved device
 - Epi off
 - Conventional Protocol
- CXLUSA- USA
- Peshke- Switzerland
- Sooft- Italy
- Vega X-Link

PTK and Crosslinking

- Epithelium removed with Excimer laser
 - Anterior stromal smoothing
 - Not topography guided reshaping
 - Can be performed on thin corneas
- 48% of eyes gained 1 line of CDVA
- Decrease in K's 2-3 D
- Decrease in corneal astigmatism 2D
- No change in ECD

Stromal Expansion with Crosslinking for Ultra-Thin Corneas

- Pachy to determine thickness needed
- 80 – 100 um lenticle inserted into the stroma
- Pachy confirmed
- Crosslinking performed

J Cataract Refract Surg. 2015 May;41(5):918-23

Intrastromal Rings and Collagen Crosslinking

- Single or double ring
- Conventional or Accelerated
 - No significant difference

CXL Procedure

- After procedure
 - Antibiotic drop for 2 weeks
 - Bandage contact lens
 - BCL removed once epi defect healed
 - Steroid for 2-4 weeks

Cornea 2004 23(1):43-49

Eye. 2004 Jan pp 1-5 / Ophthalmologica 218(2) 2004
Post-op Confocal View

- At 1 month:
 - Stromal edema
 - Decrease keratocyte density. Apoptosis
 - Lack of nerve fibers
- At 3-6 month
 - Activated keratocytes
 - Endothelial
 - Unaffected if corneal thickness > 400µm

Results

- Reduction in irregular astigmatism
 - Suggesting improved symmetry
 - Anterior (and possibly posterior) corneal surface
- Reduction in higher order aberrations
 - Particularly coma
- Reduction in Max K
 - At 12 months was 1.45D
- BCVA improved by 0.10 to 0.14 logMAR units
 - Approx 1 line improvement

Potential Risks

- Epi defect healing complications
 - Infectious keratitis
 - Sterile infiltrates
 - BCL complications

Potential Risks

- Over estimation on IOP
 - 2mm Hg in IOP
- Endothelial damage
 - If cornea < 400 um
 - If increase irradiation
 - How do over hydrated cornea respond to
- Stem cell damage
 - ROS toxicity

Failure Rates

- Vision lose of 2 or more lines
 - 2.9%
- Continued progression
 - 7.6%
- Sterile infiltrates
 - 7.6%
- Central stromal scars
 - 2.8%

Failure Rates

- Pre-op max K < 58.00 reduces failure rate to <3%
- Restricting patient age to less than 35 reduces complication rate to 1%
Future Application
- Pellucid Marginal Degeneration
- Post LASIK ectasia
- Prevention of post LASIK ectasia
- Bullous keratopathy
- Microbial keratitis
- Donor tissue modification
- Adjunct to orthokeratology

Anti-fouling surface coatings
- Catechol, PEG, urea groups
- Did not change light transmission
- Biocompatible
- Stable through autoclaving
- Reduces protein absorption
- Effective against *S. Aureus, P aerugenosa, Calibicans, F solani*

The Future Of Contact Lenses
- Silver Impregnated Lenses
 - Galyfilcon A Silicone Hydrogel Lenses Infused With Silver Iodide Delay Or Inhibit In-vitro Surface Colonization By Bacteria And Fungi Associated With Adverse Ocular Events
 - Pseudomonas aeruginosa
 - Fusarium
 - Methods:
 - Unworn and worn silver iodide-infused lenses were challenged in cultures of bacteria and fungi associated with adverse ocular events.
 - Bacterial populations were enumerated after 20 h and fungal populations after 7 days of incubation.
 - Results:
 - Near 2-log fewer bacteria were associated in all instances with the silver iodide-infused lenses compared to control lenses.
 - For non-worn lenses, germination of conidia of Fusarium was delayed for at least 48 hours in the presence of silver iodide-infused lenses.
 - For worn lenses, none of the lens matrices of galyfilcon A lenses infused with silver iodide were invaded by hyphae after 14 days of incubation whereas greater than 40% of the control lenses were observed to be penetrated by Fusarium starting at day 4.
 - Conclusions:
 - Silver-iodide infusion of lenses may reduce the risk of the lens serving as a fomite in the transfer of microorganisms from the contact lens case to the eye.

Contact Lens Safety
- Biomacromolecules 2015, 16(7) 1967-77

Contact Lens- Ocular Surface Disease
- Cornea 2013 Mar;32(3):326-31
Phospholipids
- Reside at interface of aqueous and lipid layer
- Stabilization
- Dysfunction
 - MGD
 - Contact lens adorption

Hyaluronic Acid Lenses
- Daily disposable lenses
- Release of 6 ug/ hour
- Releases up to 48 hours

Phospholipid Lenses
- Phospholipids loaded into a lens, slowly diffuse into the tear film during the day
- Release
 - 0.5 ug @ 2 hours
 - 1ug @ 10 hours

Hyaluronic Acid Lenses
- High Molecular Weight Hydroxypropyl Methylcellulose
- Imprinted
- 1000ug released over 60 days
 - 18ug/ day

Autologous Stem Cell Transplant via Contact Lens
- Cells harvested from superior fornix
- Cultured in autologous serum with silicone hydrogel lens.
- Betadine rinse, removal of corneal and limbal epi/ pannus
- 63% success in patients with LSCD

Contact Lens- Drug Delivery
Ophthalmic Drug Market

- Driven by:
 - AMD
 - Cataracts
 - Diabetic Retinopathy
 - Glaucoma
 - Dry Eye
 - Inflammation
 - Allergy
 - Infection

Drug Delivery Goal

- To increase bioavailability from less than 5% to at least 15-20%.

Topical Drug Delivery

- Topical delivery <5%
- Barriers:
 - Nasolacrimal drainage
 - Epithelial drug transport barriers
 - Clearance by the conjunctival vasculature
- Currently no marketed delivery systems for long-term drug delivery to the anterior segment of the eye.

Dissolving Contact Lenses

- Nanowaf er lens technology
 - 1/20th the thickness of current contact lenses
 - Polyvinyl alcohol resin
 - Drug laden reservoirs
- Slow release drug dispersal polymer
 - High concentration of drug in the tears
- Animal studies on corneal neovascularization showed 2x the effect compared to drops

Current Drug Delivery Approaches

- Mucoadhesives
- Viscous polymer vehicles
- Transporter-targeted prodrug design
- Receptor-targeted functionalized nanoparticles
- Iontophoresis
- Punctal plug
- Contact lens delivery systems.

Contact Lenses & Drug Delivery

- **Entrapment of drug solution in hollow cavity or center of lens**
- **Dispersion of surfactant-drug complexes in contact lens**
- **Dispersion of nanoparticles or liposomes within contact lens hydrogel**
- **Soaking in drug solution for adsorption of drug in preformed contact lens**
- **Molecular imprinting of drug in polymers hydrogel**
- **Surface adsorption of nanoparticles or drugs in contact lens hydrogel**
Soaking Lens in Drug

- HEMA lenses release majority of drug in one day
- Silicone Hydrogel lenses have similar uptake but slower release.
 - **Example:** Ciprofloxacin
 - 200ug/24 hours HEMA
 - 80ug/24 hours SiHy

Molecular Imprinting

- Polymeric content of the lens is molded to recognize the structural features and bonding preferences of the target drug molecule.
- Imprinted lenses exhibit a more prolonged drug release compared to just soaking a lens in a drug.
- Can simultaneously release up to 4 drugs
 - Dexemethesone
 - Flurbiprofen
 - Carbonic anhydrase inhibitors
 - Timolol
 - HPMC
 - Prednisone

Timolol Imprinting

- Timolol embedded onto a HEMA lens
- Single lens with sustained activity
- Can be reused/reloaded
 - Simple soak

Hydrogel Ring for Topical Drug Delivery to the Posterior Segment

- Ofloxocin delivered to the posterior pole using hydrogel ring soaked in the drug

Optom Vis Sci. 2016 Apr;93(4):377-86

Nanoparticles

- Immobilize drug-loaded nanocarriers (liposomes and nanoparticles) to the surface of the lens.
- **Drawback:** rapid detachment
 - 70% release within 5 hours

Nanoparticle treatment of Fungal Keratitis

- hydrogel-based contact lens:
 - quaternized chitosan (HTCC)
 - silver nanoparticles,
 - graphene oxide (GO)
- Electrostatic interactions between GO and HTCC, resulting in strong mechanical properties.
- Voriconazole (Vor), an antifungal drug, can be loaded onto GO
- The contact lenses also exhibited good antimicrobial functions
 - glycidyltrimethylammonium chloride and silver nanoparticles.
- Significant therapeutic effects on a fungus-infected mouse model.
Ketotifen

- A micro-emulsion of octyltrimethoxysilane creates a silica-shell on hydrogel contact lens
 - Ketotifen laden
 - Extended drug delivery system
 - More than 10 days
- No change in transmittance or physical properties of the lens

Vitamin E

- Extended Ciprofloxin, levofloxacin, chlorhexidine release
 - Increased drug binding
 - Increased release time 3 to 10 times
 - Material dependent
- Timolol-dorzolamide-20%vit E
 - Worn for 4 days
 - IOP reduction sustained for 1 week after removal

Drug Polymer film coated with a lens

- Levofloxacin in AC 15X greater at 4 hours compared to drops every 30 minutes.
- Drawbacks:
 - Increased CL thickness
 - Poor O2 permeability

Cyclosporine A

- SiHy lenses release Cyclosporine A for 2 weeks
- Coating lens with vitamin E prolongs release to 1 month

Liposome Loaded CL’s

- Entrapment of liposomes, nanoparticles, micro-emulsions and surfactant-drug complexes within the contact lens during manufacturing.
 - Swell the matrix of the lens with ethanol
- Vitamin E
 - Strong antioxidant effect
 - Non-irritating
 - 20% concentration
 - Greater concentration reduces O2 transmission

Scleral Lenses

- Drug added to the scleral lens
- PF Avastin added to lens has been shown to regress corneal NV and improve vision
Barriers the limit commercialization

- Contact lens critical properties altered
 - water content
 - tensile strength (mechanical properties)
 - ion permeability
 - Transparency
 - oxygen permeability
- Drug Factors
 - drug stability during processing/fabrication (drug integrity test)
 - zero order release kinetics (prevent burst release)
 - drug release during monomer extraction step after fabrication (to remove un-reacted monomers)
 - protein adherence
 - drug release during storage in packaging solution
 - shelf life study
 - cost-benefit analysis

Contact Lenses and Technology

- Smart Contact Lenses
 - Light emitting diode on the surface of a soft contact lens
 - Heads up displays
 - Augmented reality
 - Gaming
 - Video Cameras
 - Super human vision

Nano Lett 2013, 13(6) 2814-21

Monitoring Contact Lens

Thank You

CHRISTINE-SINDT@UIOWA.EDU